{"title":"Detailed Equivalent Modeling and Simulation of Modular Multilevel Converters with Partially-Integrated Battery Energy Storage","authors":"Ramin Parvari;Shaahin Filizadeh;Ioni Fernando","doi":"10.35833/MPCE.2023.000986","DOIUrl":null,"url":null,"abstract":"This paper develops a detailed equivalent model for modular multilevel converters with partially-integrated battery energy storage. The proposed model gains computational efficiency in two ways. Firstly, it markedly reduces the large number of nodes in the conventional switching model of the converter, thereby shrinking the size of its admittance matrix. Secondly, it avoids computationally expensive re-triangularization of the admittance matrix during the normal operation of the converter and restricts it only to the rare occasions of converter blocking. Mathematical derivation of the model is carried out using differential equations of the converter. The computational efficiency and accuracy of the proposed model are confirmed by comparison of the results from its implementation in the PSCAD/EM TDC simulator against conventional detailed switching models and measurements from a single-phase scaled-down laboratory setup. This paper also shows a case study wherein a converter with partially-integrated batteries is included in the CIGRE B4-5 benchmark system.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 4","pages":"1444-1457"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10726914","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10726914/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper develops a detailed equivalent model for modular multilevel converters with partially-integrated battery energy storage. The proposed model gains computational efficiency in two ways. Firstly, it markedly reduces the large number of nodes in the conventional switching model of the converter, thereby shrinking the size of its admittance matrix. Secondly, it avoids computationally expensive re-triangularization of the admittance matrix during the normal operation of the converter and restricts it only to the rare occasions of converter blocking. Mathematical derivation of the model is carried out using differential equations of the converter. The computational efficiency and accuracy of the proposed model are confirmed by comparison of the results from its implementation in the PSCAD/EM TDC simulator against conventional detailed switching models and measurements from a single-phase scaled-down laboratory setup. This paper also shows a case study wherein a converter with partially-integrated batteries is included in the CIGRE B4-5 benchmark system.
期刊介绍:
Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.