Dynamic State Estimation Based Protection for Large-Scale Renewable Energy Transmission Lines

IF 6.1 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Meng Li;Ming Nie;Jinghan He;Huiyuan Zhang
{"title":"Dynamic State Estimation Based Protection for Large-Scale Renewable Energy Transmission Lines","authors":"Meng Li;Ming Nie;Jinghan He;Huiyuan Zhang","doi":"10.35833/MPCE.2024.000633","DOIUrl":null,"url":null,"abstract":"The development of low-carbon energy systems and renewable energy sources (RESs) are critical to solving the energy crisis around the world. However, renewable energy generation control strategies lead to fault characteristics such as fault current amplitude limitation and phase angle distortion. Focusing on large-scale renewable energy transmission lines, the sensitivity of traditional current differential protection and distance protection may be reduced, and there is even the risk of maloperation. Therefore, a suitable transmission line model is established, which considers the distributed capacitance. Afterward, a novel dynamic state estimation based protection (DSEBP) for large-scale renewable energy transmission lines is proposed. The proposed DSEBP adopts instantaneous measurements and additional protection criteria to ensure the quick action and reliability. Finally, faults are identified by checking the matching degree between the actual measurements and the established transmission line model. The performance of the proposed DSEBP is verified through PSCAD/EMTDC and real-time digital simulator (RTDS) hardware-in-loop tests. The results demonstrate that the proposed DSEBP can identify various types of faults quickly and reliably. Meanwhile, the proposed DSEBP has a better capability to withstand fault resistance and disturbance.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 4","pages":"1188-1198"},"PeriodicalIF":6.1000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10785255","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10785255/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The development of low-carbon energy systems and renewable energy sources (RESs) are critical to solving the energy crisis around the world. However, renewable energy generation control strategies lead to fault characteristics such as fault current amplitude limitation and phase angle distortion. Focusing on large-scale renewable energy transmission lines, the sensitivity of traditional current differential protection and distance protection may be reduced, and there is even the risk of maloperation. Therefore, a suitable transmission line model is established, which considers the distributed capacitance. Afterward, a novel dynamic state estimation based protection (DSEBP) for large-scale renewable energy transmission lines is proposed. The proposed DSEBP adopts instantaneous measurements and additional protection criteria to ensure the quick action and reliability. Finally, faults are identified by checking the matching degree between the actual measurements and the established transmission line model. The performance of the proposed DSEBP is verified through PSCAD/EMTDC and real-time digital simulator (RTDS) hardware-in-loop tests. The results demonstrate that the proposed DSEBP can identify various types of faults quickly and reliably. Meanwhile, the proposed DSEBP has a better capability to withstand fault resistance and disturbance.
基于动态估计的大型可再生能源输电线路保护
发展低碳能源系统和可再生能源是解决全球能源危机的关键。然而,可再生能源发电控制策略导致了故障电流限幅和相位角畸变等故障特征。针对大型可再生能源输电线路,传统的电流差动保护和距离保护的灵敏度可能会降低,甚至存在误操作的风险。因此,建立了考虑分布电容的传输线模型。在此基础上,提出了一种基于动态估计的大型可再生能源输电线路保护方法。提出的DSEBP采用瞬时测量和附加保护标准,以确保快速行动和可靠性。最后,通过检查实际测量值与建立的输电线路模型的匹配程度来识别故障。通过PSCAD/EMTDC和实时数字模拟器(RTDS)硬件在环测试验证了所提出的DSEBP的性能。结果表明,该方法能够快速、可靠地识别各种类型的故障。同时,该方法具有较好的抗故障和抗干扰能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Modern Power Systems and Clean Energy
Journal of Modern Power Systems and Clean Energy ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
12.30
自引率
14.30%
发文量
97
审稿时长
13 weeks
期刊介绍: Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信