{"title":"Reliability Assessment of Distribution Systems Under Influence of Stochastic Nature of PV and Spatial-Temporal Distribution of EV Load Demand","authors":"Lei Xiao;Kashem M. Muttaqi;Ashish P. Agalgaonkar","doi":"10.35833/MPCE.2024.000336","DOIUrl":null,"url":null,"abstract":"With the progressive exhaustion of fossil energy and growing concerns about climate change, it has been observed that distributed energy resources such as photovoltaic (PV) systems and electric vehicles (EVs) are being increasingly integrated into distribution systems. This underscores the increasing imperative for a thorough analysis to evaluate reliability from the perspectives of distribution systems and EV charging services, taking into account the stochastic nature of PV and EV load demands. This paper presents an approach for the reliability assessment of distribution systems that incorporate PV and EVs considering reliability models for both PV systems and EV battery systems. It also defines new indices to investigate the adequacy and customer-side reliability for EV charging services. The developed methodology utilizes a Monte Carlo simulation-based approach and is showcased using the modified Roy Billinton Test System (RBTS) Bus 4 distribution system. The results illustrate that reliability indices for EV charging services, such as percentage of charging energy not supplied (PCENS), average EV interruption frequency index (AEVIFI) and average EV interruption duration index (AEVIDI), are improved under the proposed approach.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 4","pages":"1287-1299"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10734986","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10734986/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
With the progressive exhaustion of fossil energy and growing concerns about climate change, it has been observed that distributed energy resources such as photovoltaic (PV) systems and electric vehicles (EVs) are being increasingly integrated into distribution systems. This underscores the increasing imperative for a thorough analysis to evaluate reliability from the perspectives of distribution systems and EV charging services, taking into account the stochastic nature of PV and EV load demands. This paper presents an approach for the reliability assessment of distribution systems that incorporate PV and EVs considering reliability models for both PV systems and EV battery systems. It also defines new indices to investigate the adequacy and customer-side reliability for EV charging services. The developed methodology utilizes a Monte Carlo simulation-based approach and is showcased using the modified Roy Billinton Test System (RBTS) Bus 4 distribution system. The results illustrate that reliability indices for EV charging services, such as percentage of charging energy not supplied (PCENS), average EV interruption frequency index (AEVIFI) and average EV interruption duration index (AEVIDI), are improved under the proposed approach.
期刊介绍:
Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.