HIF: Height Interval Filtering for Efficient Dynamic Points Removal

IF 5.3 2区 计算机科学 Q2 ROBOTICS
Shufang Zhang;Tao Jiang;Jiazheng Wu;Ziyu Meng;Ziyang Zhang;Shan An
{"title":"HIF: Height Interval Filtering for Efficient Dynamic Points Removal","authors":"Shufang Zhang;Tao Jiang;Jiazheng Wu;Ziyu Meng;Ziyang Zhang;Shan An","doi":"10.1109/LRA.2025.3587843","DOIUrl":null,"url":null,"abstract":"3D point cloud mapping is crucial for localization and navigation, but residual traces of dynamic objects compromise map quality, posing a key challenge for real-time applications in dynamic environments. Existing approaches, however, often incur significant computational overhead, making it difficult to meet the real-time processing requirements. To address this issue, we introduce the Height Interval Filtering (HIF) method, which constructs pillar-based height interval representations to probabilistically model the vertical dimension and updates interval probabilities using Bayes filter. Furthermore, we propose a low-height preservation strategy that improves the detection of unknown spaces, reducing misclassification in areas blocked by obstacles. Experiments on public datasets show that HIF achieves a 7.7× improvement in runtime while maintaining comparable accuracy and enhanced robustness in complex, dynamic environments. The code will be publicly available.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 9","pages":"8938-8945"},"PeriodicalIF":5.3000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11077378/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

3D point cloud mapping is crucial for localization and navigation, but residual traces of dynamic objects compromise map quality, posing a key challenge for real-time applications in dynamic environments. Existing approaches, however, often incur significant computational overhead, making it difficult to meet the real-time processing requirements. To address this issue, we introduce the Height Interval Filtering (HIF) method, which constructs pillar-based height interval representations to probabilistically model the vertical dimension and updates interval probabilities using Bayes filter. Furthermore, we propose a low-height preservation strategy that improves the detection of unknown spaces, reducing misclassification in areas blocked by obstacles. Experiments on public datasets show that HIF achieves a 7.7× improvement in runtime while maintaining comparable accuracy and enhanced robustness in complex, dynamic environments. The code will be publicly available.
HIF:用于高效动态点去除的高度间隔滤波
3D点云映射对于定位和导航至关重要,但动态物体的残留痕迹会影响地图质量,对动态环境中的实时应用提出了关键挑战。然而,现有的方法通常会产生大量的计算开销,使其难以满足实时处理需求。为了解决这个问题,我们引入了高度间隔过滤(HIF)方法,该方法构建基于柱的高度间隔表示来对垂直维度进行概率建模,并使用贝叶斯滤波器更新间隔概率。此外,我们提出了一种低高度保存策略,提高了对未知空间的检测,减少了被障碍物阻挡区域的误分类。在公共数据集上的实验表明,HIF在运行时间上提高了7.7倍,同时在复杂的动态环境中保持了相当的精度和增强的鲁棒性。代码将是公开的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信