Pascal Hunold, Giulia Pizzolato, Nadia Heramvand, Laura Kaiser, Giulia Barbiera, Olivia van Ray, Roman Thomas, Julie George, Martin Peifer, Robert Hänsel-Hertsch
{"title":"DynaTag for efficient mapping of transcription factors in low-input samples and at single-cell resolution","authors":"Pascal Hunold, Giulia Pizzolato, Nadia Heramvand, Laura Kaiser, Giulia Barbiera, Olivia van Ray, Roman Thomas, Julie George, Martin Peifer, Robert Hänsel-Hertsch","doi":"10.1038/s41467-025-61797-9","DOIUrl":null,"url":null,"abstract":"<p>Systematic discovery of transcription factor (TF) landscapes in low-input samples and at single cell level is a major challenge in the fields of molecular biology, genetics, and epigenetics. Here, we present cleavage under <i><u>Dyna</u></i>mic targets and <i><u>Tag</u></i>mentation (DynaTag), enabling robust mapping of TF-DNA interactions using a physiological salt solution during sample preparation. DynaTag uncovers occupancy alterations for 15 TFs in stem cell and cancer tissue models. We highlight changes in TF-DNA binding for NANOG, MYC, and OCT4, during stem-cell differentiation, at both bulk and single-cell resolutions. DynaTag surpasses CUT&RUN and ChIP-seq in signal-to-background ratio and resolution. Furthermore, using tumours of a small cell lung cancer model derived from a single female donor, DynaTag reveals increased chromatin occupancy of FOXA1, MYC, and the mutant p53 R248Q at enriched gene pathways (e.g. epithelial-mesenchymal transition), following chemotherapy treatment. Collectively, we believe that DynaTag represents a significant technological advancement, facilitating precise characterization of TF landscapes across diverse biological systems and complex models.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"27 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61797-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Systematic discovery of transcription factor (TF) landscapes in low-input samples and at single cell level is a major challenge in the fields of molecular biology, genetics, and epigenetics. Here, we present cleavage under Dynamic targets and Tagmentation (DynaTag), enabling robust mapping of TF-DNA interactions using a physiological salt solution during sample preparation. DynaTag uncovers occupancy alterations for 15 TFs in stem cell and cancer tissue models. We highlight changes in TF-DNA binding for NANOG, MYC, and OCT4, during stem-cell differentiation, at both bulk and single-cell resolutions. DynaTag surpasses CUT&RUN and ChIP-seq in signal-to-background ratio and resolution. Furthermore, using tumours of a small cell lung cancer model derived from a single female donor, DynaTag reveals increased chromatin occupancy of FOXA1, MYC, and the mutant p53 R248Q at enriched gene pathways (e.g. epithelial-mesenchymal transition), following chemotherapy treatment. Collectively, we believe that DynaTag represents a significant technological advancement, facilitating precise characterization of TF landscapes across diverse biological systems and complex models.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.