{"title":"Achieving Superconformal Sodium Deposition on Carbon Nanofiber Film by Constructing Axial Oxygen Coordinated Copper Atomic Sites","authors":"Enhao Liu, Yibo Zhu, Shengyong Gao, Junping Hu, Wei Feng, Jisheng Zhou","doi":"10.1002/adfm.202511934","DOIUrl":null,"url":null,"abstract":"Achieving superconformal deposition of metallic sodium on 3D matrices is a critical challenge for sodium metal batteries (SMBs). Herein, flexible 3D carbon nanofiber films anchored with axial O‐coordinated CuN<jats:sub>4</jats:sub>O<jats:sub>2</jats:sub> single‐atom sites (CuN<jats:sub>4</jats:sub>O<jats:sub>2</jats:sub>‐CNF) by a ZnCl<jats:sub>2</jats:sub>‐mediated thermal activation strategy is designed. Unlike conventional planar CuN<jats:sub>3</jats:sub> configurations obtained without ZnCl<jats:sub>2</jats:sub>, the axial O in CuN<jats:sub>4</jats:sub>O<jats:sub>2</jats:sub> sites exhibits a high density of states near the Fermi level, modulating the electronic structure of neighboring Cu and N. This lowers Na<jats:sup>+</jats:sup> adsorption energy, accelerates charge transfer and enhances electrolyte permeability, enabling superconformal sodium deposition. As a result, the CuN<jats:sub>4</jats:sub>O<jats:sub>2</jats:sub>‐CNF achieves an ultra‐low nucleation overpotential of 10 mV, a coulombic efficiency of 99.92% over 8,000 h, and exceptional cycling stability exceeding 10,000 h in symmetric cells. The full coin cells paired with a Na<jats:sub>3</jats:sub>V<jats:sub>2</jats:sub>(PO<jats:sub>4</jats:sub>)<jats:sub>3</jats:sub> cathode retain 89.5 mA h g<jats:sup>−1</jats:sup> after 1,000 cycles at 1 A g<jats:sup>−1</jats:sup> and deliver 80.3 mA h g<jats:sup>−1</jats:sup> at 5 A g<jats:sup>−1</jats:sup>, demonstrating superior rate capability. The pouch cells also maintain a stable capacity of 75.8 mA h g<jats:sup>−1</jats:sup> after 150 cycles at 58.5 mA g<jats:sup>−1</jats:sup>. These results highlight the transformative potential of axial‐coordination for designing high‐performance metal batteries, offering insights into interfacial dynamics and host architectures for next‐generation energy‐storage systems.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"126 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202511934","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Achieving superconformal deposition of metallic sodium on 3D matrices is a critical challenge for sodium metal batteries (SMBs). Herein, flexible 3D carbon nanofiber films anchored with axial O‐coordinated CuN4O2 single‐atom sites (CuN4O2‐CNF) by a ZnCl2‐mediated thermal activation strategy is designed. Unlike conventional planar CuN3 configurations obtained without ZnCl2, the axial O in CuN4O2 sites exhibits a high density of states near the Fermi level, modulating the electronic structure of neighboring Cu and N. This lowers Na+ adsorption energy, accelerates charge transfer and enhances electrolyte permeability, enabling superconformal sodium deposition. As a result, the CuN4O2‐CNF achieves an ultra‐low nucleation overpotential of 10 mV, a coulombic efficiency of 99.92% over 8,000 h, and exceptional cycling stability exceeding 10,000 h in symmetric cells. The full coin cells paired with a Na3V2(PO4)3 cathode retain 89.5 mA h g−1 after 1,000 cycles at 1 A g−1 and deliver 80.3 mA h g−1 at 5 A g−1, demonstrating superior rate capability. The pouch cells also maintain a stable capacity of 75.8 mA h g−1 after 150 cycles at 58.5 mA g−1. These results highlight the transformative potential of axial‐coordination for designing high‐performance metal batteries, offering insights into interfacial dynamics and host architectures for next‐generation energy‐storage systems.
实现金属钠在三维基体上的超适形沉积是钠金属电池(smb)面临的一个关键挑战。本文通过ZnCl2介导的热活化策略,设计了具有轴向O配位CuN4O2单原子位(CuN4O2 - CNF)的柔性三维纳米碳纤维薄膜。与不含ZnCl2的传统平面CuN3构型不同,CuN4O2位的轴向O在费米能级附近表现出高密度的态,调节了相邻Cu和n的电子结构,从而降低了Na+的吸附能,加速了电荷转移,增强了电解质的渗透性,从而实现了超共形钠沉积。因此,CuN4O2‐CNF在对称电池中实现了10 mV的超低成核过电位,超过8,000 h的库仑效率达到99.92%,以及超过10,000 h的卓越循环稳定性。完整的硬币电池与Na3V2(PO4)3阴极配对,在1ag - 1下循环1000次后保持89.5 mA h g - 1,在5ag - 1下提供80.3 mA h g - 1,显示出优越的速率能力。在58.5 mA g - 1下循环150次后,袋状电池也保持75.8 mA h g - 1的稳定容量。这些结果突出了轴向协调在设计高性能金属电池方面的变革潜力,为下一代储能系统的界面动力学和主机架构提供了见解。
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.