{"title":"Cancer immunology data engine reveals secreted AOAH as a potential immunotherapy","authors":"Lanqi Gong, Jie Luo, Emily Yang, Beibei Ru, Ziyang Qi, Yuma Yang, Anshu Rani, Abhilasha Purohit, Yu Zhang, Grace Guan, Rohit Paul, Trang Vu, Zuojia Chen, Renyue Ji, Chi-Ping Day, Chuan Wu, Glenn Merlino, David Fitzgerald, Grégoire Altan-Bonnet, Kenneth Aldape, Peng Jiang","doi":"10.1016/j.cell.2025.07.004","DOIUrl":null,"url":null,"abstract":"Secreted proteins are central mediators of intercellular communications and can serve as therapeutic targets in diverse diseases. The ∼1,903 human genes encoding secreted proteins are difficult to study through common genetic approaches. To address this hurdle and, more generally, to discover cancer therapeutics, we developed the Cancer Immunology Data Engine (CIDE, <span><span>https://cide.ccr.cancer.gov</span><svg aria-label=\"Opens in new window\" focusable=\"false\" height=\"20\" viewbox=\"0 0 8 8\"><path d=\"M1.12949 2.1072V1H7V6.85795H5.89111V2.90281L0.784057 8L0 7.21635L5.11902 2.1072H1.12949Z\"></path></svg></span>), which incorporates 90 omics datasets spanning 8,575 tumor profiles with immunotherapy outcomes from 17 solid tumor types. CIDE systematically identifies all genes associated with immunotherapy outcomes. Then, we focused on secreted proteins prioritized by CIDE without known cancer roles and validated regulatory effects on immune checkpoint blockade for AOAH, CR1L, COLQ, and ADAMTS7 in mouse models. The top hit, acyloxyacyl hydrolase (AOAH), potentiates immunotherapies in multiple tumor models by sensitizing T cell receptors to weak antigens and protecting dendritic cells through depleting immunosuppressive arachidonoyl phosphatidylcholines and oxidized derivatives.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"4 1","pages":""},"PeriodicalIF":45.5000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2025.07.004","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Secreted proteins are central mediators of intercellular communications and can serve as therapeutic targets in diverse diseases. The ∼1,903 human genes encoding secreted proteins are difficult to study through common genetic approaches. To address this hurdle and, more generally, to discover cancer therapeutics, we developed the Cancer Immunology Data Engine (CIDE, https://cide.ccr.cancer.gov), which incorporates 90 omics datasets spanning 8,575 tumor profiles with immunotherapy outcomes from 17 solid tumor types. CIDE systematically identifies all genes associated with immunotherapy outcomes. Then, we focused on secreted proteins prioritized by CIDE without known cancer roles and validated regulatory effects on immune checkpoint blockade for AOAH, CR1L, COLQ, and ADAMTS7 in mouse models. The top hit, acyloxyacyl hydrolase (AOAH), potentiates immunotherapies in multiple tumor models by sensitizing T cell receptors to weak antigens and protecting dendritic cells through depleting immunosuppressive arachidonoyl phosphatidylcholines and oxidized derivatives.
期刊介绍:
Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO).
The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries.
In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.