Meng Qu, Lu Shen, Zhenzhong Zeng, Bolei Yang, Huiru Zhong, Xinrong Yang, Xi Lu
{"title":"Prolonged wind droughts in a warming climate threaten global wind power security","authors":"Meng Qu, Lu Shen, Zhenzhong Zeng, Bolei Yang, Huiru Zhong, Xinrong Yang, Xi Lu","doi":"10.1038/s41558-025-02387-x","DOIUrl":null,"url":null,"abstract":"Prolonged low-wind events, termed wind droughts, threaten wind turbine electricity generation, yet their future trajectories remain poorly understood. Here, using hourly data from 21 IPCC models, we reveal robust increasing trends in wind drought duration at both global and regional scales by 2100, across low- and high-CO2 scenarios. These trends are primarily driven by declining mid-latitude cyclone frequencies and Arctic warming. Notably, the duration of 25-year return events is projected to increase by up to 20% under low warming scenarios and 40% under very high warming scenarios in northern mid-latitude countries, threatening energy security in these densely populated areas. Additionally, record-breaking wind drought extremes will probably become more frequent in a warming climate, particularly in eastern North America, western Russia, northeastern China and north-central Africa. Our analysis suggests that ~20% of existing wind turbines are in regions at high future risk of record-breaking wind drought extremes, a factor not yet considered in current assessments. Prolonged low wind speeds can lead to a strong reduction in wind power generation. Here, the authors show that such wind drought events become more frequent and extended under global warming, threatening energy security in some regions.","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"15 8","pages":"842-849"},"PeriodicalIF":27.1000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Climate Change","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41558-025-02387-x","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Prolonged low-wind events, termed wind droughts, threaten wind turbine electricity generation, yet their future trajectories remain poorly understood. Here, using hourly data from 21 IPCC models, we reveal robust increasing trends in wind drought duration at both global and regional scales by 2100, across low- and high-CO2 scenarios. These trends are primarily driven by declining mid-latitude cyclone frequencies and Arctic warming. Notably, the duration of 25-year return events is projected to increase by up to 20% under low warming scenarios and 40% under very high warming scenarios in northern mid-latitude countries, threatening energy security in these densely populated areas. Additionally, record-breaking wind drought extremes will probably become more frequent in a warming climate, particularly in eastern North America, western Russia, northeastern China and north-central Africa. Our analysis suggests that ~20% of existing wind turbines are in regions at high future risk of record-breaking wind drought extremes, a factor not yet considered in current assessments. Prolonged low wind speeds can lead to a strong reduction in wind power generation. Here, the authors show that such wind drought events become more frequent and extended under global warming, threatening energy security in some regions.
期刊介绍:
Nature Climate Change is dedicated to addressing the scientific challenge of understanding Earth's changing climate and its societal implications. As a monthly journal, it publishes significant and cutting-edge research on the nature, causes, and impacts of global climate change, as well as its implications for the economy, policy, and the world at large.
The journal publishes original research spanning the natural and social sciences, synthesizing interdisciplinary research to provide a comprehensive understanding of climate change. It upholds the high standards set by all Nature-branded journals, ensuring top-tier original research through a fair and rigorous review process, broad readership access, high standards of copy editing and production, rapid publication, and independence from academic societies and other vested interests.
Nature Climate Change serves as a platform for discussion among experts, publishing opinion, analysis, and review articles. It also features Research Highlights to highlight important developments in the field and original reporting from renowned science journalists in the form of feature articles.
Topics covered in the journal include adaptation, atmospheric science, ecology, economics, energy, impacts and vulnerability, mitigation, oceanography, policy, sociology, and sustainability, among others.