The synaptic architecture of layer 5 thick tufted excitatory neurons in mouse visual cortex

IF 20 1区 医学 Q1 NEUROSCIENCES
Agnes L. Bodor, Casey M. Schneider-Mizell, Chi Zhang, Leila Elabbady, Alex Mallen, Andi Bergeson, Derrick Brittain, JoAnn Buchanan, Daniel J. Bumbarger, Rachel Dalley, Clare Gamlin, Emily Joyce, Daniel Kapner, Sam Kinn, Gayathri Mahalingam, Sharmishtaa Seshamani, Shelby Suckow, Marc Takeno, Russel Torres, Wenjing Yin, J. Alexander Bae, Manuel A. Castro, Sven Dorkenwald, Akhilesh Halageri, Zhen Jia, Chris Jordan, Nico Kemnitz, Kisuk Lee, Kai Li, Ran Lu, Thomas Macrina, Eric Mitchell, Shanka Subhra Mondal, Shang Mu, Barak Nehoran, Sergiy Popovych, William Silversmith, Nicholas L. Turner, Szi-chieh Yu, William Wong, Jingpeng Wu, Brendan Celii, Luke Campagnola, Stephanie C. Seeman, Tim Jarsky, Naixin Ren, Anton Arkhipov, Jacob Reimer, H. Sebastian Seung, R. Clay Reid, Forrest Collman, Nuno Maçarico da Costa
{"title":"The synaptic architecture of layer 5 thick tufted excitatory neurons in mouse visual cortex","authors":"Agnes L. Bodor, Casey M. Schneider-Mizell, Chi Zhang, Leila Elabbady, Alex Mallen, Andi Bergeson, Derrick Brittain, JoAnn Buchanan, Daniel J. Bumbarger, Rachel Dalley, Clare Gamlin, Emily Joyce, Daniel Kapner, Sam Kinn, Gayathri Mahalingam, Sharmishtaa Seshamani, Shelby Suckow, Marc Takeno, Russel Torres, Wenjing Yin, J. Alexander Bae, Manuel A. Castro, Sven Dorkenwald, Akhilesh Halageri, Zhen Jia, Chris Jordan, Nico Kemnitz, Kisuk Lee, Kai Li, Ran Lu, Thomas Macrina, Eric Mitchell, Shanka Subhra Mondal, Shang Mu, Barak Nehoran, Sergiy Popovych, William Silversmith, Nicholas L. Turner, Szi-chieh Yu, William Wong, Jingpeng Wu, Brendan Celii, Luke Campagnola, Stephanie C. Seeman, Tim Jarsky, Naixin Ren, Anton Arkhipov, Jacob Reimer, H. Sebastian Seung, R. Clay Reid, Forrest Collman, Nuno Maçarico da Costa","doi":"10.1038/s41593-025-02004-2","DOIUrl":null,"url":null,"abstract":"Despite significant progress in characterizing neocortical cell types, a complete understanding of the synaptic connections of individual excitatory cells remains elusive. This study investigates the connectivity of mouse visual cortex thick tufted layer 5 pyramidal cells, also known as extratelencephalic neurons (L5-ETns), using a 1 mm3 publicly available electron microscopy dataset. The analysis reveals that, in their immediate vicinity, L5-ETns primarily establish connections with a group of inhibitory cell types, which, in turn, specifically target the L5-ETns back. The most common excitatory targets of L5-ETns are layer 5 intertelencephalic neurons (L5-ITns) and layer 6 (L6) pyramidal cells, whereas synapses with other L5-ETns are less common. When L5-ETns extend their axons to other cortical regions, they tend to connect more with excitatory cells. Our results highlight a circuit motif where a subclass of excitatory cells forms a subcircuit with specific inhibitory cell types. This is achieved using a publicly available, automated approach for synapse recognition and automated cell typing, offering a framework for exploring the connectivity of other neuron types. This study maps the connections of layer 5 pyramidal neurons in the mouse cortex, revealing distinct local and intercortical wiring patterns, and provides an open framework for exploring the connectivity of cell types.","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":"28 8","pages":"1704-1715"},"PeriodicalIF":20.0000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41593-025-02004-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41593-025-02004-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Despite significant progress in characterizing neocortical cell types, a complete understanding of the synaptic connections of individual excitatory cells remains elusive. This study investigates the connectivity of mouse visual cortex thick tufted layer 5 pyramidal cells, also known as extratelencephalic neurons (L5-ETns), using a 1 mm3 publicly available electron microscopy dataset. The analysis reveals that, in their immediate vicinity, L5-ETns primarily establish connections with a group of inhibitory cell types, which, in turn, specifically target the L5-ETns back. The most common excitatory targets of L5-ETns are layer 5 intertelencephalic neurons (L5-ITns) and layer 6 (L6) pyramidal cells, whereas synapses with other L5-ETns are less common. When L5-ETns extend their axons to other cortical regions, they tend to connect more with excitatory cells. Our results highlight a circuit motif where a subclass of excitatory cells forms a subcircuit with specific inhibitory cell types. This is achieved using a publicly available, automated approach for synapse recognition and automated cell typing, offering a framework for exploring the connectivity of other neuron types. This study maps the connections of layer 5 pyramidal neurons in the mouse cortex, revealing distinct local and intercortical wiring patterns, and provides an open framework for exploring the connectivity of cell types.

Abstract Image

Abstract Image

小鼠视觉皮层第5层厚丛状兴奋性神经元的突触结构
尽管在表征新皮质细胞类型方面取得了重大进展,但对单个兴奋性细胞的突触连接的完整理解仍然难以捉摸。本研究使用1 mm3公开的电子显微镜数据集研究了小鼠视觉皮层厚簇状第5层锥体细胞(也称为脑外神经元(L5-ETns))的连通性。分析表明,在L5-ETns的邻近区域,L5-ETns主要与一组抑制性细胞类型建立联系,而抑制性细胞类型反过来又专门针对L5-ETns。L5-ETns最常见的兴奋靶点是第5层脑间神经元(L5-ITns)和第6层锥体细胞,而与其他L5-ETns的突触则不太常见。当l5 - etn将轴突延伸到其他皮质区域时,它们倾向于更多地与兴奋性细胞连接。我们的研究结果突出了一个电路基序,其中一个亚类兴奋性细胞与特定的抑制性细胞类型形成一个亚回路。这是通过公开可用的自动突触识别和自动细胞分型方法实现的,为探索其他神经元类型的连通性提供了一个框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature neuroscience
Nature neuroscience 医学-神经科学
CiteScore
38.60
自引率
1.20%
发文量
212
审稿时长
1 months
期刊介绍: Nature Neuroscience, a multidisciplinary journal, publishes papers of the utmost quality and significance across all realms of neuroscience. The editors welcome contributions spanning molecular, cellular, systems, and cognitive neuroscience, along with psychophysics, computational modeling, and nervous system disorders. While no area is off-limits, studies offering fundamental insights into nervous system function receive priority. The journal offers high visibility to both readers and authors, fostering interdisciplinary communication and accessibility to a broad audience. It maintains high standards of copy editing and production, rigorous peer review, rapid publication, and operates independently from academic societies and other vested interests. In addition to primary research, Nature Neuroscience features news and views, reviews, editorials, commentaries, perspectives, book reviews, and correspondence, aiming to serve as the voice of the global neuroscience community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信