{"title":"Data-Driven Sustainable <i>In Vitro</i> Campaigns to Decipher Invasive Breast Cancer Features.","authors":"Lekha Shah, Valentina Breschi, Annalisa Tirella","doi":"10.1021/acsbiomaterials.5c00731","DOIUrl":null,"url":null,"abstract":"<p><p>The intrinsic complexity of biological processes often hides the role of dynamic microenvironmental cues in the development of pathological states. Microphysiological systems (MPSs) are emerging technological platforms that model <i>in vitro</i> dynamics of tissue-specific microenvironments, enabling a holistic understanding of pathophysiology. In our previous works, we engineered and used breast tumor MPS differing in matrix stiffness, pH, and fluid flow mimicking normal and tumor breast tissue. High-dimensional data using two distinctive human breast cell lines (i.e., MDA-MB-231, MCF-7), investigating cell proliferation, epithelial-to-mesenchymal transition (EMT), and breast cancer stem cell markers (B-CSC), were obtained from breast-specific microenvironments. Recognizing that the widespread adoption of MPS requires tailoring its complexity to application demands, we herein report an innovative machine-learning (ML)-based approach to analyze MPS data. This approach uses unsupervised <i>k</i>-means clustering and feature extraction to inform on key markers and specific microenvironments that distinguish invasive from non-invasive breast cell phenotypes. This data-driven approach streamlines future experimental design and emphasizes the translational potential of integrating MPS-derived insights with ML to refine prognostic tools and personalize therapeutic strategies.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.5c00731","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The intrinsic complexity of biological processes often hides the role of dynamic microenvironmental cues in the development of pathological states. Microphysiological systems (MPSs) are emerging technological platforms that model in vitro dynamics of tissue-specific microenvironments, enabling a holistic understanding of pathophysiology. In our previous works, we engineered and used breast tumor MPS differing in matrix stiffness, pH, and fluid flow mimicking normal and tumor breast tissue. High-dimensional data using two distinctive human breast cell lines (i.e., MDA-MB-231, MCF-7), investigating cell proliferation, epithelial-to-mesenchymal transition (EMT), and breast cancer stem cell markers (B-CSC), were obtained from breast-specific microenvironments. Recognizing that the widespread adoption of MPS requires tailoring its complexity to application demands, we herein report an innovative machine-learning (ML)-based approach to analyze MPS data. This approach uses unsupervised k-means clustering and feature extraction to inform on key markers and specific microenvironments that distinguish invasive from non-invasive breast cell phenotypes. This data-driven approach streamlines future experimental design and emphasizes the translational potential of integrating MPS-derived insights with ML to refine prognostic tools and personalize therapeutic strategies.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture