German Hernandez, Rafael Borge, Dan Blanchon, Terri-Ann Berry
{"title":"Effects of Positive Pressure Ventilation System on Indoor Particulate Matter Concentrations in a Subtropical Climate","authors":"German Hernandez, Rafael Borge, Dan Blanchon, Terri-Ann Berry","doi":"10.1155/ina/7602803","DOIUrl":null,"url":null,"abstract":"<p>Air pollution negatively impacts human health, with pollutants such as PM<sub>2.5</sub> linked to increased mortality, respiratory infections, lung disease, heart disease, and stroke. Recent trends, such as increased building airtightness and changes in occupant behavior during the COVID-19 pandemic, highlight the need for greater attention to indoor air quality (IAQ). Mechanical ventilation (MV) systems are commonly used to improve IAQ and occupant comfort, especially in airtight homes, yet their effectiveness in humid winter conditions remains underexplored. This study examined the impact of MV, specifically positive pressure ventilation (PPV) systems, on IAQ in eight single-family homes in northern New Zealand. Data were collected over 12 weeks in winter, with 6 weeks of monitoring before and after PPV installation. Additionally, the study period overlapped with varying COVID-19 lockdown levels, enabling an assessment of how increased occupancy influenced IAQ. The findings show that PPV system installation resulted in reductions over the winter period of 68% for particulate matter (PM) concentrations (both PM<sub>2.5</sub> and PM<sub>10</sub>) and 9% in relative humidity (RH), with no significant changes in temperature. PM<sub>2.5</sub> concentrations increased by an average of 56% during the COVID lockdown, potentially resulting from increased occupancy levels.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"2025 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/ina/7602803","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor air","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/ina/7602803","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Air pollution negatively impacts human health, with pollutants such as PM2.5 linked to increased mortality, respiratory infections, lung disease, heart disease, and stroke. Recent trends, such as increased building airtightness and changes in occupant behavior during the COVID-19 pandemic, highlight the need for greater attention to indoor air quality (IAQ). Mechanical ventilation (MV) systems are commonly used to improve IAQ and occupant comfort, especially in airtight homes, yet their effectiveness in humid winter conditions remains underexplored. This study examined the impact of MV, specifically positive pressure ventilation (PPV) systems, on IAQ in eight single-family homes in northern New Zealand. Data were collected over 12 weeks in winter, with 6 weeks of monitoring before and after PPV installation. Additionally, the study period overlapped with varying COVID-19 lockdown levels, enabling an assessment of how increased occupancy influenced IAQ. The findings show that PPV system installation resulted in reductions over the winter period of 68% for particulate matter (PM) concentrations (both PM2.5 and PM10) and 9% in relative humidity (RH), with no significant changes in temperature. PM2.5 concentrations increased by an average of 56% during the COVID lockdown, potentially resulting from increased occupancy levels.
期刊介绍:
The quality of the environment within buildings is a topic of major importance for public health.
Indoor Air provides a location for reporting original research results in the broad area defined by the indoor environment of non-industrial buildings. An international journal with multidisciplinary content, Indoor Air publishes papers reflecting the broad categories of interest in this field: health effects; thermal comfort; monitoring and modelling; source characterization; ventilation and other environmental control techniques.
The research results present the basic information to allow designers, building owners, and operators to provide a healthy and comfortable environment for building occupants, as well as giving medical practitioners information on how to deal with illnesses related to the indoor environment.