{"title":"Theoretical Kinetics Study of the OH + CH3SH Reaction Based on an Analytical Full-Dimensional Potential Energy Surface","authors":"Joaquin Espinosa-Garcia, Cipriano Rangel","doi":"10.1002/kin.21796","DOIUrl":null,"url":null,"abstract":"<p>Based on a recently developed full-dimensional analytical potential energy surface, named PES-2024, which was fitted to high-level ab initio calculations, three different kinetic theories were used for the computation of thermal rate constants: variational transition state theory (VTST), quasi-classical trajectory theory (QCT) and ring polymer molecular dynamics (RPMD) method. Temperature dependence of the thermal rate constants, branching ratios and kinetic isotope effects (KIEs) for the C1 (methyl-H-abstraction process) and C2 paths (thiol-H-abstraction process) of the OH + CH<sub>3</sub>SH polyatomic gas-phase hydrogen abstraction reaction were theoretically determined within the 200–1000 K temperature range, except the RPMD values which were only reported at the highest temperature by computational limitations. We found that while the overall thermal rate constants obtained with the VTST theory show a V-shaped temperature dependence, with a pronounced minimum near 600 K, the QCT and RPMD dynamics theories question this abrupt change at high temperatures. At 1000 K, where the RPMD theory is exact, the VTST and QCT methods overestimate the RPMD results, which is associated with the consideration of recrossing effects. In general, the theoretical KIEs depicted a “normal” behavior for the C1 (values close to unity) and C2 paths in the OH+CH<sub>3</sub>SH/OH+CH<sub>3</sub>SD reactions, and an “inverse” behavior in the OH+CH<sub>3</sub>SH/OD+CH<sub>3</sub>SD reactions for both paths. Finally, the discrepancies between theory and experiment were analyzed as a function of several factors, such as limitations of the kinetics theories and the potential energy surface, as well as the uncertainties in the experimental measurements.</p>","PeriodicalId":13894,"journal":{"name":"International Journal of Chemical Kinetics","volume":"57 9","pages":"520-529"},"PeriodicalIF":1.6000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/kin.21796","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Kinetics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/kin.21796","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Based on a recently developed full-dimensional analytical potential energy surface, named PES-2024, which was fitted to high-level ab initio calculations, three different kinetic theories were used for the computation of thermal rate constants: variational transition state theory (VTST), quasi-classical trajectory theory (QCT) and ring polymer molecular dynamics (RPMD) method. Temperature dependence of the thermal rate constants, branching ratios and kinetic isotope effects (KIEs) for the C1 (methyl-H-abstraction process) and C2 paths (thiol-H-abstraction process) of the OH + CH3SH polyatomic gas-phase hydrogen abstraction reaction were theoretically determined within the 200–1000 K temperature range, except the RPMD values which were only reported at the highest temperature by computational limitations. We found that while the overall thermal rate constants obtained with the VTST theory show a V-shaped temperature dependence, with a pronounced minimum near 600 K, the QCT and RPMD dynamics theories question this abrupt change at high temperatures. At 1000 K, where the RPMD theory is exact, the VTST and QCT methods overestimate the RPMD results, which is associated with the consideration of recrossing effects. In general, the theoretical KIEs depicted a “normal” behavior for the C1 (values close to unity) and C2 paths in the OH+CH3SH/OH+CH3SD reactions, and an “inverse” behavior in the OH+CH3SH/OD+CH3SD reactions for both paths. Finally, the discrepancies between theory and experiment were analyzed as a function of several factors, such as limitations of the kinetics theories and the potential energy surface, as well as the uncertainties in the experimental measurements.
期刊介绍:
As the leading archival journal devoted exclusively to chemical kinetics, the International Journal of Chemical Kinetics publishes original research in gas phase, condensed phase, and polymer reaction kinetics, as well as biochemical and surface kinetics. The Journal seeks to be the primary archive for careful experimental measurements of reaction kinetics, in both simple and complex systems. The Journal also presents new developments in applied theoretical kinetics and publishes large kinetic models, and the algorithms and estimates used in these models. These include methods for handling the large reaction networks important in biochemistry, catalysis, and free radical chemistry. In addition, the Journal explores such topics as the quantitative relationships between molecular structure and chemical reactivity, organic/inorganic chemistry and reaction mechanisms, and the reactive chemistry at interfaces.