A reduction of the “cycles plus K4's” problem

IF 0.7 3区 数学 Q2 MATHEMATICS
Aseem Dalal , Jessica McDonald , Songling Shan
{"title":"A reduction of the “cycles plus K4's” problem","authors":"Aseem Dalal ,&nbsp;Jessica McDonald ,&nbsp;Songling Shan","doi":"10.1016/j.disc.2025.114696","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>H</em> be a 2-regular graph and let <em>G</em> be obtained from <em>H</em> by gluing in vertex-disjoint copies of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>. The “cycles plus <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>'s” problem is to show that <em>G</em> is 4-colourable; this is a special case of the <em>Strong Colouring Conjecture</em>. In this paper we reduce the “cycles plus <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>'s” problem to a specific 3-colourability problem. In the 3-colourability problem, vertex-disjoint triangles are glued (in a limited way) onto a disjoint union of triangles and paths of length at most 12, and we ask for 3-colourability of the resulting graph.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 2","pages":"Article 114696"},"PeriodicalIF":0.7000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25003048","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let H be a 2-regular graph and let G be obtained from H by gluing in vertex-disjoint copies of K4. The “cycles plus K4's” problem is to show that G is 4-colourable; this is a special case of the Strong Colouring Conjecture. In this paper we reduce the “cycles plus K4's” problem to a specific 3-colourability problem. In the 3-colourability problem, vertex-disjoint triangles are glued (in a limited way) onto a disjoint union of triangles and paths of length at most 12, and we ask for 3-colourability of the resulting graph.
减少了“循环加K4”的问题
设H是一个2正则图,设G是由H通过粘接K4的顶点不相交的副本得到的。“循环加K4”的问题是为了证明G是四色的;这是强着色猜想的一个特例。在本文中,我们将“循环加K4”问题简化为一个特定的3-可色性问题。在3色性问题中,顶点不相交的三角形(以有限的方式)粘在不相交的三角形和长度最多为12的路径上,我们要求生成的图具有3色性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信