A posteriori error estimates for the DD+L2 jumps method on the neutron diffusion equations

IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED
Patrick Ciarlet , Minh Hieu Do , Mario Gervais , François Madiot
{"title":"A posteriori error estimates for the DD+L2 jumps method on the neutron diffusion equations","authors":"Patrick Ciarlet ,&nbsp;Minh Hieu Do ,&nbsp;Mario Gervais ,&nbsp;François Madiot","doi":"10.1016/j.camwa.2025.07.026","DOIUrl":null,"url":null,"abstract":"<div><div>We analyze <em>a posteriori</em> error estimates for the discretization of the neutron diffusion equations with a Domain Decomposition Method, the so-called DD+<span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> jumps method. We provide guaranteed and locally efficient estimators on a base block equation, the one-group neutron diffusion equation. Classically, one introduces a Lagrange multiplier to account for the jumps on the interface. This Lagrange multiplier is used for the reconstruction of the physical variables. Remarkably, no reconstruction of the Lagrange multiplier is needed to achieve the optimal <em>a posteriori</em> estimates.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"195 ","pages":"Pages 349-365"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125003165","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We analyze a posteriori error estimates for the discretization of the neutron diffusion equations with a Domain Decomposition Method, the so-called DD+L2 jumps method. We provide guaranteed and locally efficient estimators on a base block equation, the one-group neutron diffusion equation. Classically, one introduces a Lagrange multiplier to account for the jumps on the interface. This Lagrange multiplier is used for the reconstruction of the physical variables. Remarkably, no reconstruction of the Lagrange multiplier is needed to achieve the optimal a posteriori estimates.
中子扩散方程DD+L2跳变方法的后验误差估计
本文用域分解方法,即DD+L2跳变法,分析了中子扩散方程离散化的后验误差估计。我们对基块方程,即单群中子扩散方程,给出了保证的局部有效估计。经典地,人们引入拉格朗日乘数来解释界面上的跳跃。这个拉格朗日乘子用于物理变量的重建。值得注意的是,不需要重建拉格朗日乘子来获得最优的后验估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信