Bin Jin , Xiao Liang , Xiaoyu Wang , Li-Hua Peng , Jin-Long Yang
{"title":"Complete genome sequence of Pseudoalteromonas lipolytica M7NS11, a chitinolytic bacterium isolated from the New Britain Trench","authors":"Bin Jin , Xiao Liang , Xiaoyu Wang , Li-Hua Peng , Jin-Long Yang","doi":"10.1016/j.margen.2025.101203","DOIUrl":null,"url":null,"abstract":"<div><div><em>Pseudoalteromonas</em>, recognized as one of chitin decomposers in marine environments, plays a pivotal role in global carbon and nitrogen cycling. This study reports the whole genome sequence of bacterium M7NS11, which was isolated from deep-sea sediments of the New Britain Trench. Genomic analysis revealed two circular elements: a 3,607,764-bp chromosomal structure (41.79 % GC) and an 899,258-bp plasmid structure (40.87 % GC). Whole-genome analysis revealed that this strain possesses 9 genes encoding chitinases and 1 gene encoding lytic polysaccharide monooxygenase (LPMO), indicating that the strain may efficiently degrade chitin through synergistic interactions between chitinases and LPMO to acquire essential nutrients. Additionally, it contains four genes (<em>amgK</em>, <em>glmU</em>, <em>murA</em>, and <em>murB</em>), encoding enzymes which could utilize chitin degradation products to synthesize peptidoglycan, a major component of cell wall. The analysis of the complete genome of <em>P. lipolytica</em> M7NS11 provides new insights into the role of <em>Pseudoalteromonas</em> in deep-sea material cycling, and underscores the potential of <em>P. lipolytica</em> M7NS11 as a valuable resource for isolating efficient chitinases.</div></div>","PeriodicalId":18321,"journal":{"name":"Marine genomics","volume":"82 ","pages":"Article 101203"},"PeriodicalIF":1.5000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine genomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187477872500039X","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Pseudoalteromonas, recognized as one of chitin decomposers in marine environments, plays a pivotal role in global carbon and nitrogen cycling. This study reports the whole genome sequence of bacterium M7NS11, which was isolated from deep-sea sediments of the New Britain Trench. Genomic analysis revealed two circular elements: a 3,607,764-bp chromosomal structure (41.79 % GC) and an 899,258-bp plasmid structure (40.87 % GC). Whole-genome analysis revealed that this strain possesses 9 genes encoding chitinases and 1 gene encoding lytic polysaccharide monooxygenase (LPMO), indicating that the strain may efficiently degrade chitin through synergistic interactions between chitinases and LPMO to acquire essential nutrients. Additionally, it contains four genes (amgK, glmU, murA, and murB), encoding enzymes which could utilize chitin degradation products to synthesize peptidoglycan, a major component of cell wall. The analysis of the complete genome of P. lipolytica M7NS11 provides new insights into the role of Pseudoalteromonas in deep-sea material cycling, and underscores the potential of P. lipolytica M7NS11 as a valuable resource for isolating efficient chitinases.
期刊介绍:
The journal publishes papers on all functional and evolutionary aspects of genes, chromatin, chromosomes and (meta)genomes of marine (and freshwater) organisms. It deals with new genome-enabled insights into the broader framework of environmental science. Topics within the scope of this journal include:
• Population genomics and ecology
• Evolutionary and developmental genomics
• Comparative genomics
• Metagenomics
• Environmental genomics
• Systems biology
More specific topics include: geographic and phylogenomic characterization of aquatic organisms, metabolic capacities and pathways of organisms and communities, biogeochemical cycles, genomics and integrative approaches applied to microbial ecology including (meta)transcriptomics and (meta)proteomics, tracking of infectious diseases, environmental stress, global climate change and ecosystem modelling.