{"title":"Mechanistic dynamic modelling of biological systems: The road ahead","authors":"Julio R. Banga , Alejandro F. Villaverde","doi":"10.1016/j.coisb.2025.100553","DOIUrl":null,"url":null,"abstract":"<div><div>Mathematical modelling is one of the pillars of systems biology. In this review, we focus on models that are <em>mechanistic</em>, i.e., they explain the mechanism by which a phenomenon takes place, and <em>dynamic</em>, i.e., they consist of differential equations that simulate the time course of a system. Our aim is to provide an updated state of the art of mechanistic dynamic modelling in systems biology. These models, which are based on first principles, are crucial for obtaining insights about complex physiological processes. They can be used to test hypotheses, predict system behaviour, and explore and optimize intervention strategies. Since biological processes are typically nonlinear, multiscale, and subject to various sources of uncertainty, the task of building and analysing robust and reliable mechanistic models is fraught with difficulties. In this paper, we provide an overview of recent developments in key topics such as model discovery and structure selection, identifiability analysis, parameter estimation, uncertainty quantification, and model reliability. We discuss the challenges and open questions in these areas and outline perspectives for future work.</div></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"42 ","pages":"Article 100553"},"PeriodicalIF":2.2000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452310025000137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mathematical modelling is one of the pillars of systems biology. In this review, we focus on models that are mechanistic, i.e., they explain the mechanism by which a phenomenon takes place, and dynamic, i.e., they consist of differential equations that simulate the time course of a system. Our aim is to provide an updated state of the art of mechanistic dynamic modelling in systems biology. These models, which are based on first principles, are crucial for obtaining insights about complex physiological processes. They can be used to test hypotheses, predict system behaviour, and explore and optimize intervention strategies. Since biological processes are typically nonlinear, multiscale, and subject to various sources of uncertainty, the task of building and analysing robust and reliable mechanistic models is fraught with difficulties. In this paper, we provide an overview of recent developments in key topics such as model discovery and structure selection, identifiability analysis, parameter estimation, uncertainty quantification, and model reliability. We discuss the challenges and open questions in these areas and outline perspectives for future work.
期刊介绍:
Current Opinion in Systems Biology is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of Systems Biology. It publishes polished, concise and timely systematic reviews and opinion articles. In addition to describing recent trends, the authors are encouraged to give their subjective opinion on the topics discussed. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year. The following areas will be covered by Current Opinion in Systems Biology: -Genomics and Epigenomics -Gene Regulation -Metabolic Networks -Cancer and Systemic Diseases -Mathematical Modelling -Big Data Acquisition and Analysis -Systems Pharmacology and Physiology -Synthetic Biology -Stem Cells, Development, and Differentiation -Systems Biology of Mold Organisms -Systems Immunology and Host-Pathogen Interaction -Systems Ecology and Evolution