{"title":"Estimation and testing of time-varying coefficients spatial autoregressive panel data model","authors":"Lingling Tian , Chuanhua Wei , Wenxing Ding , Mixia Wu","doi":"10.1016/j.spasta.2025.100922","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates a spatial autoregressive (SAR) panel data model featuring fixed effects and time-varying coefficients in both the covariates and spatial dependence. We propose a two-stage least squares estimation based on local linear dummy variables (2SLS-LLDV). This method effectively captures individual heterogeneity via dummy variable construction while maintaining computational tractability. Under mild regularity conditions, we establish the asymptotic normality of the proposed estimators. Furthermore, we devise a residual-based bootstrap procedure to test the temporal stability of time-varying spatial dependence parameter, providing a robust mechanism for p-value calculation in finite-sample scenarios. Monte Carlo simulations are conducted to evaluate the finite sample performance of our proposed methods. Finally, we employ our proposed estimation and testing methods to analyze carbon emissions in China and cigarette demand in the United States, demonstrating their practical applicability.</div></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":"69 ","pages":"Article 100922"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675325000442","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates a spatial autoregressive (SAR) panel data model featuring fixed effects and time-varying coefficients in both the covariates and spatial dependence. We propose a two-stage least squares estimation based on local linear dummy variables (2SLS-LLDV). This method effectively captures individual heterogeneity via dummy variable construction while maintaining computational tractability. Under mild regularity conditions, we establish the asymptotic normality of the proposed estimators. Furthermore, we devise a residual-based bootstrap procedure to test the temporal stability of time-varying spatial dependence parameter, providing a robust mechanism for p-value calculation in finite-sample scenarios. Monte Carlo simulations are conducted to evaluate the finite sample performance of our proposed methods. Finally, we employ our proposed estimation and testing methods to analyze carbon emissions in China and cigarette demand in the United States, demonstrating their practical applicability.
期刊介绍:
Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication.
Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.