Wavelet-CNN for temporal data: Enhancing long-term stock price prediction via multi-resolution wavelet decomposition and CNN-based feature extraction

Komei Hiruta , Junsuke Senoguchi
{"title":"Wavelet-CNN for temporal data: Enhancing long-term stock price prediction via multi-resolution wavelet decomposition and CNN-based feature extraction","authors":"Komei Hiruta ,&nbsp;Junsuke Senoguchi","doi":"10.1016/j.jjimei.2025.100360","DOIUrl":null,"url":null,"abstract":"<div><div>The global economy relies heavily on stock markets, making accurate stock price predictions essential for academic research and practical applications. The task of predicting stock prices presents significant challenges due to the non-linear relationships between historical and future values and the multitude of factors influencing price fluctuations. To address these challenges, we propose an approach that combines wavelet transformation and a convolutional neural network (CNN), both of which are specialized for long-term stock price prediction, to efficiently and automatically extract the features of stock prices at various temporal resolutions. Specifically, we first acquire components with different temporal resolutions using wavelet transform, then convert the wavelet-transformed data into images, and finally perform CNN processing to automatically extract useful temporal features for prediction. Experimental results demonstrate that our method achieves a higher prediction accuracy than conventional machine learning methods, especially in long-term predictions.</div></div>","PeriodicalId":100699,"journal":{"name":"International Journal of Information Management Data Insights","volume":"5 2","pages":"Article 100360"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Management Data Insights","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667096825000424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The global economy relies heavily on stock markets, making accurate stock price predictions essential for academic research and practical applications. The task of predicting stock prices presents significant challenges due to the non-linear relationships between historical and future values and the multitude of factors influencing price fluctuations. To address these challenges, we propose an approach that combines wavelet transformation and a convolutional neural network (CNN), both of which are specialized for long-term stock price prediction, to efficiently and automatically extract the features of stock prices at various temporal resolutions. Specifically, we first acquire components with different temporal resolutions using wavelet transform, then convert the wavelet-transformed data into images, and finally perform CNN processing to automatically extract useful temporal features for prediction. Experimental results demonstrate that our method achieves a higher prediction accuracy than conventional machine learning methods, especially in long-term predictions.
时间数据的小波- cnn:通过多分辨率小波分解和基于cnn的特征提取增强长期股票价格预测
全球经济在很大程度上依赖于股票市场,准确的股票价格预测对于学术研究和实际应用至关重要。由于历史和未来价值之间的非线性关系以及影响价格波动的众多因素,预测股票价格的任务提出了重大挑战。为了解决这些挑战,我们提出了一种结合小波变换和卷积神经网络(CNN)的方法,这两种方法都是专门用于长期股票价格预测的,以有效和自动地提取不同时间分辨率下的股票价格特征。具体而言,我们首先使用小波变换获取不同时间分辨率的分量,然后将小波变换后的数据转换成图像,最后进行CNN处理,自动提取有用的时间特征进行预测。实验结果表明,该方法比传统的机器学习方法具有更高的预测精度,特别是在长期预测中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信