Modeling cryptocurrency failure using deep learning approaches and a post-hoc interpretability algorithm

IF 8.2 2区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Peng Xie , Nan Li , Hongwei Du
{"title":"Modeling cryptocurrency failure using deep learning approaches and a post-hoc interpretability algorithm","authors":"Peng Xie ,&nbsp;Nan Li ,&nbsp;Hongwei Du","doi":"10.1016/j.im.2025.104215","DOIUrl":null,"url":null,"abstract":"<div><div>The lack of enforced trading termination in the cryptocurrency market allows for an exploration of the “natural death” of tradable assets. We propose two deep learning survival models to study this phenomenon and a post-hoc interpretability algorithm to interpret the results and test the hypothesis. The proposed deep learning survival models outperform the time-dependent Cox regression in both prediction performance and interpretation flexibility. Our results indicate that lower trading volume, market capitalization, social media attention, and higher price volatility predict increased cryptocurrency “death” hazards.</div></div>","PeriodicalId":56291,"journal":{"name":"Information & Management","volume":"62 8","pages":"Article 104215"},"PeriodicalIF":8.2000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information & Management","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378720625001181","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The lack of enforced trading termination in the cryptocurrency market allows for an exploration of the “natural death” of tradable assets. We propose two deep learning survival models to study this phenomenon and a post-hoc interpretability algorithm to interpret the results and test the hypothesis. The proposed deep learning survival models outperform the time-dependent Cox regression in both prediction performance and interpretation flexibility. Our results indicate that lower trading volume, market capitalization, social media attention, and higher price volatility predict increased cryptocurrency “death” hazards.
使用深度学习方法和事后可解释性算法建模加密货币故障
加密货币市场缺乏强制交易终止,这使得人们可以探索可交易资产的“自然死亡”。我们提出了两个深度学习生存模型来研究这一现象,并提出了一个事后可解释性算法来解释结果并检验假设。所提出的深度学习生存模型在预测性能和解释灵活性方面都优于时间相关的Cox回归。我们的研究结果表明,较低的交易量、市值、社交媒体关注度和较高的价格波动性预示着加密货币“死亡”风险的增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information & Management
Information & Management 工程技术-计算机:信息系统
CiteScore
17.90
自引率
6.10%
发文量
123
审稿时长
1 months
期刊介绍: Information & Management is a publication that caters to researchers in the field of information systems as well as managers, professionals, administrators, and senior executives involved in designing, implementing, and managing Information Systems Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信