MARNet: Multi-scale adaptive relational network for robust point cloud completion via cross-modal fusion

IF 15.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jinlong Xie , Liping Zhang , Long Cheng , Jian Yao , Pengjiang Qian , Binrong Zhu , Guiran Liu
{"title":"MARNet: Multi-scale adaptive relational network for robust point cloud completion via cross-modal fusion","authors":"Jinlong Xie ,&nbsp;Liping Zhang ,&nbsp;Long Cheng ,&nbsp;Jian Yao ,&nbsp;Pengjiang Qian ,&nbsp;Binrong Zhu ,&nbsp;Guiran Liu","doi":"10.1016/j.inffus.2025.103505","DOIUrl":null,"url":null,"abstract":"<div><div>Point cloud completion, pivotal for enabling robust 3D understanding in autonomous systems and augmented reality, faces persistent challenges in structural fidelity preservation and detail adaptive restoration. This paper presents MARNet—a novel multi-scale adaptive relational network via cross-modal guidance. We first design a spatial-relational adaptive feature descriptor integrating space-feature adaptive downsampling with relation-aware weighted edge convolution. This integration effectively preserves structural integrity while suppressing outlier interference. We then introduce a hierarchical cross-modal fusion module establishing bidirectional feature interaction pathways between 3D point clouds and multi-view images through attention-guided mechanisms, which significantly enhances feature representation capacity. Additionally, our adaptive multi-resolution point generator dynamically adjusts upsampling stages based on each shape’s geometric complexity, restoring highly detailed structures while mitigating over- and under-completion issues. Extensive experiments demonstrate state-of-the-art performance with Chamfer Distance of <span><math><mrow><mn>6</mn><mo>.</mo><mn>36</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span> on Completion 3D and <span><math><mrow><mn>6</mn><mo>.</mo><mn>42</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span> on PCN datasets. Our method outperforms existing approaches in preserving fine details and global consistency, particularly for complex structures, while exhibiting robustness to noise and viewpoint variations. The code is available at <span><span>https://github.com/long-git22/MARNet.git</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"126 ","pages":"Article 103505"},"PeriodicalIF":15.5000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253525005779","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Point cloud completion, pivotal for enabling robust 3D understanding in autonomous systems and augmented reality, faces persistent challenges in structural fidelity preservation and detail adaptive restoration. This paper presents MARNet—a novel multi-scale adaptive relational network via cross-modal guidance. We first design a spatial-relational adaptive feature descriptor integrating space-feature adaptive downsampling with relation-aware weighted edge convolution. This integration effectively preserves structural integrity while suppressing outlier interference. We then introduce a hierarchical cross-modal fusion module establishing bidirectional feature interaction pathways between 3D point clouds and multi-view images through attention-guided mechanisms, which significantly enhances feature representation capacity. Additionally, our adaptive multi-resolution point generator dynamically adjusts upsampling stages based on each shape’s geometric complexity, restoring highly detailed structures while mitigating over- and under-completion issues. Extensive experiments demonstrate state-of-the-art performance with Chamfer Distance of 6.36×104 on Completion 3D and 6.42×103 on PCN datasets. Our method outperforms existing approaches in preserving fine details and global consistency, particularly for complex structures, while exhibiting robustness to noise and viewpoint variations. The code is available at https://github.com/long-git22/MARNet.git.
MARNet:基于跨模态融合的多尺度自适应关系网络
点云补全对于实现自主系统和增强现实中强大的3D理解至关重要,但在结构保真度保存和细节自适应恢复方面面临着持续的挑战。提出了一种新型的多尺度自适应关系网络marnet。我们首先设计了一个空间关系自适应特征描述子,将空间特征自适应降采样与关系感知加权边缘卷积相结合。这种集成有效地保持了结构完整性,同时抑制了异常干扰。然后,我们引入了一个分层的跨模态融合模块,通过注意引导机制在三维点云和多视图图像之间建立双向特征交互路径,显著提高了特征表示能力。此外,我们的自适应多分辨率点生成器根据每个形状的几何复杂性动态调整上采样阶段,恢复高度详细的结构,同时减少完成过多和未完成的问题。大量的实验表明,在完井3D和PCN数据集上,倒角距离分别为6.36×104和6.42×103,具有最先进的性能。我们的方法在保留精细细节和全局一致性方面优于现有方法,特别是对于复杂结构,同时表现出对噪声和视点变化的鲁棒性。代码可在https://github.com/long-git22/MARNet.git上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信