Multi-modal predictive modeling of schizophrenia severity: Leveraging liver function indicators and cognitive scores with random forest and SVM

IF 2.1 4区 医学 Q3 CLINICAL NEUROLOGY
Sayed Sayem , Sayed Sumsul Islam Sanny , Rupali Hossain , Tanjila Hossen , Md Tauhidur Rahman Sakib , Md Abu Talha
{"title":"Multi-modal predictive modeling of schizophrenia severity: Leveraging liver function indicators and cognitive scores with random forest and SVM","authors":"Sayed Sayem ,&nbsp;Sayed Sumsul Islam Sanny ,&nbsp;Rupali Hossain ,&nbsp;Tanjila Hossen ,&nbsp;Md Tauhidur Rahman Sakib ,&nbsp;Md Abu Talha","doi":"10.1016/j.pscychresns.2025.112032","DOIUrl":null,"url":null,"abstract":"<div><div>Schizophrenia is a complex neuropsychiatric disorder with cognitive deficits and systemic physiological disturbances, including emerging links to hepatic dysfunction via the gut-liver-brain axis. Despite growing evidence, the integration of liver function biomarkers into predictive models for schizophrenia severity remains largely unexplored. This study proposes a multimodal machine learning framework combining hepatic indicators—Alanine Aminotransferase (ALT), Aspartate Aminotransferase (AST), Bilirubin, Albumin, and International Normalized Ratio (INR)—with cognitive assessment scores to enhance severity prediction. A synthetic dataset of 500 patient profiles was programmatically generated using MATLAB R2023a, simulating realistic clinical variability across demographics and biomarker distributions. Controlled missingness was introduced and imputed using moving mean methods, followed by Min-Max normalization to standardize features. Two machine learning models were developed: Random Forest for continuous severity regression and Support Vector Machine (SVM) with Error-Correcting Output Codes (ECOC) and Radial Basis Function (RBF) kernel for multiclass classification. The Random Forest regressor achieved an RMSE of 21.85, Mean Absolute Error of 17.26, and an R² of 0.70, capturing 72 % of variance. The SVM classifier attained 86.4 % accuracy, with macro-averaged precision, recall, and F1-score of 0.86, and an AUC of 0.91. Feature importance analysis revealed cognitive score, ALT, and AST as dominant predictors. Residual and confusion matrix analyses further confirmed model reliability. This integrative approach demonstrates the technical feasibility and clinical relevance of leveraging hepatic biomarkers alongside cognitive scores for schizophrenia severity assessment, offering a robust data-driven methodology for complex psychiatric evaluation.</div></div>","PeriodicalId":20776,"journal":{"name":"Psychiatry Research: Neuroimaging","volume":"352 ","pages":"Article 112032"},"PeriodicalIF":2.1000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychiatry Research: Neuroimaging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925492725000873","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Schizophrenia is a complex neuropsychiatric disorder with cognitive deficits and systemic physiological disturbances, including emerging links to hepatic dysfunction via the gut-liver-brain axis. Despite growing evidence, the integration of liver function biomarkers into predictive models for schizophrenia severity remains largely unexplored. This study proposes a multimodal machine learning framework combining hepatic indicators—Alanine Aminotransferase (ALT), Aspartate Aminotransferase (AST), Bilirubin, Albumin, and International Normalized Ratio (INR)—with cognitive assessment scores to enhance severity prediction. A synthetic dataset of 500 patient profiles was programmatically generated using MATLAB R2023a, simulating realistic clinical variability across demographics and biomarker distributions. Controlled missingness was introduced and imputed using moving mean methods, followed by Min-Max normalization to standardize features. Two machine learning models were developed: Random Forest for continuous severity regression and Support Vector Machine (SVM) with Error-Correcting Output Codes (ECOC) and Radial Basis Function (RBF) kernel for multiclass classification. The Random Forest regressor achieved an RMSE of 21.85, Mean Absolute Error of 17.26, and an R² of 0.70, capturing 72 % of variance. The SVM classifier attained 86.4 % accuracy, with macro-averaged precision, recall, and F1-score of 0.86, and an AUC of 0.91. Feature importance analysis revealed cognitive score, ALT, and AST as dominant predictors. Residual and confusion matrix analyses further confirmed model reliability. This integrative approach demonstrates the technical feasibility and clinical relevance of leveraging hepatic biomarkers alongside cognitive scores for schizophrenia severity assessment, offering a robust data-driven methodology for complex psychiatric evaluation.
精神分裂症严重程度的多模态预测建模:利用随机森林和支持向量机的肝功能指标和认知评分
精神分裂症是一种复杂的神经精神疾病,伴有认知缺陷和全身生理障碍,包括通过肠-肝-脑轴与肝功能障碍的联系。尽管有越来越多的证据,肝功能生物标志物与精神分裂症严重程度预测模型的整合在很大程度上仍未被探索。本研究提出了一个多模式机器学习框架,结合肝脏指标-丙氨酸转氨酶(ALT),天冬氨酸转氨酶(AST),胆红素,白蛋白和国际标准化比率(INR) -与认知评估评分,以加强严重程度预测。使用MATLAB R2023a编程生成500例患者资料的合成数据集,模拟人口统计学和生物标志物分布的现实临床变异性。引入控制缺失度,采用移动均值法进行输入,然后采用最小-最大归一化方法对特征进行标准化。开发了两种机器学习模型:用于连续严重性回归的随机森林模型和用于多类分类的带有纠错输出码(ECOC)和径向基函数(RBF)核的支持向量机模型。随机森林回归器的RMSE为21.85,平均绝对误差为17.26,R²为0.70,捕获了72%的方差。SVM分类器的准确率达到86.4%,宏观平均精度、召回率和f1得分为0.86,AUC为0.91。特征重要性分析显示,认知评分、ALT和AST是主要的预测因子。残差分析和混淆矩阵分析进一步证实了模型的可靠性。这种综合方法证明了利用肝脏生物标志物和认知评分进行精神分裂症严重程度评估的技术可行性和临床相关性,为复杂的精神病学评估提供了一种可靠的数据驱动方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Psychiatry Research: Neuroimaging
Psychiatry Research: Neuroimaging 医学-精神病学
CiteScore
3.80
自引率
0.00%
发文量
86
审稿时长
22.5 weeks
期刊介绍: The Neuroimaging section of Psychiatry Research publishes manuscripts on positron emission tomography, magnetic resonance imaging, computerized electroencephalographic topography, regional cerebral blood flow, computed tomography, magnetoencephalography, autoradiography, post-mortem regional analyses, and other imaging techniques. Reports concerning results in psychiatric disorders, dementias, and the effects of behaviorial tasks and pharmacological treatments are featured. We also invite manuscripts on the methods of obtaining images and computer processing of the images themselves. Selected case reports are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信