Evidential deep learning-based drug-target interaction prediction

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yanpeng Zhao, Yuting Xing, Yixin Zhang, Yifei Wang, Mengxuan Wan, Duoyun Yi, Chengkun Wu, Shangze Li, Huiyan Xu, Hongyang Zhang, Ziyi Liu, Guowei Zhou, Mengfan Li, Xuanze Wang, Zhengshan Chen, Ruijiang Li, Lianlian Wu, Dongsheng Zhao, Peng Zan, Song He, Xiaochen Bo
{"title":"Evidential deep learning-based drug-target interaction prediction","authors":"Yanpeng Zhao, Yuting Xing, Yixin Zhang, Yifei Wang, Mengxuan Wan, Duoyun Yi, Chengkun Wu, Shangze Li, Huiyan Xu, Hongyang Zhang, Ziyi Liu, Guowei Zhou, Mengfan Li, Xuanze Wang, Zhengshan Chen, Ruijiang Li, Lianlian Wu, Dongsheng Zhao, Peng Zan, Song He, Xiaochen Bo","doi":"10.1038/s41467-025-62235-6","DOIUrl":null,"url":null,"abstract":"<p>Drug-target interaction (DTI) prediction is a crucial component of drug discovery. Recent deep learning methods show great potential in this field but also encounter substantial challenges. These include generating reliable confidence estimates for predictions, enhancing robustness when handling novel, unseen DTIs, and mitigating the tendency toward overconfident and incorrect predictions. To solve these problems, we propose EviDTI, a novel approach utilizing evidential deep learning (EDL) for uncertainty quantification in neural network-based DTI prediction. EviDTI integrates multiple data dimensions, including drug 2D topological graphs and 3D spatial structures, and target sequence features. Through EDL, EviDTI provides uncertainty estimates for its predictions. Experimental results on three benchmark datasets demonstrate the competitiveness of EviDTI against 11 baseline models. In addition, our study shows that EviDTI can calibrate prediction errors. More importantly, well-calibrated uncertainty information enhances the efficiency of drug discovery by prioritizing DTIs with higher confident predictions for experimental validation. In a case study focused on tyrosine kinase modulators, uncertainty-guided predictions identify novel potential modulators targeting tyrosine kinase FAK and FLT3. These results underscore the potential of evidential deep learning as a robust tool for uncertainty quantification in DTI prediction and its broader implications for accelerating drug discovery.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"27 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62235-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Drug-target interaction (DTI) prediction is a crucial component of drug discovery. Recent deep learning methods show great potential in this field but also encounter substantial challenges. These include generating reliable confidence estimates for predictions, enhancing robustness when handling novel, unseen DTIs, and mitigating the tendency toward overconfident and incorrect predictions. To solve these problems, we propose EviDTI, a novel approach utilizing evidential deep learning (EDL) for uncertainty quantification in neural network-based DTI prediction. EviDTI integrates multiple data dimensions, including drug 2D topological graphs and 3D spatial structures, and target sequence features. Through EDL, EviDTI provides uncertainty estimates for its predictions. Experimental results on three benchmark datasets demonstrate the competitiveness of EviDTI against 11 baseline models. In addition, our study shows that EviDTI can calibrate prediction errors. More importantly, well-calibrated uncertainty information enhances the efficiency of drug discovery by prioritizing DTIs with higher confident predictions for experimental validation. In a case study focused on tyrosine kinase modulators, uncertainty-guided predictions identify novel potential modulators targeting tyrosine kinase FAK and FLT3. These results underscore the potential of evidential deep learning as a robust tool for uncertainty quantification in DTI prediction and its broader implications for accelerating drug discovery.

Abstract Image

基于证据的深度学习药物-靶标相互作用预测
药物-靶标相互作用(DTI)预测是药物发现的重要组成部分。最近的深度学习方法在这一领域显示出巨大的潜力,但也面临着巨大的挑战。这些包括为预测生成可靠的置信度估计,在处理新的、未见过的dti时增强健壮性,以及减轻过度自信和不正确预测的倾向。为了解决这些问题,我们提出了一种利用证据深度学习(EDL)在基于神经网络的DTI预测中进行不确定性量化的新方法EviDTI。EviDTI集成了多个数据维度,包括药物二维拓扑图和三维空间结构,以及靶标序列特征。通过EDL, EviDTI为其预测提供了不确定性估计。在3个基准数据集上的实验结果表明,EviDTI对11个基准模型具有竞争力。此外,我们的研究表明,EviDTI可以校准预测误差。更重要的是,校准良好的不确定度信息通过优先考虑具有更高信心预测的dti来提高药物发现的效率,以进行实验验证。在一项针对酪氨酸激酶调节剂的案例研究中,不确定性指导预测确定了针对酪氨酸激酶FAK和FLT3的新型潜在调节剂。这些结果强调了证据深度学习作为DTI预测中不确定性量化的强大工具的潜力及其对加速药物发现的更广泛影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信