Hongwei Sun, Ning Xing, Jiayu Zou, Yuqi Rong, Yang Shi, Han Ding, Hai-Tao Zhang
{"title":"Neural Network-Based Switching Output Regulation Control for High-Speed Nano-Positioning Stages","authors":"Hongwei Sun, Ning Xing, Jiayu Zou, Yuqi Rong, Yang Shi, Han Ding, Hai-Tao Zhang","doi":"10.1016/j.eng.2025.07.023","DOIUrl":null,"url":null,"abstract":"This study establishes a high-speed nano-positioning stage composed of a symmetrically driven structure with multiple parallel-bonded thin piezoelectric ceramic layers capable of performing micro- or nano-scale manipulations. Accordingly, a neural-network-based switching output regulation controller (NN-SORC) was developed to compensate for the associated hysteresis nonlinearity. To address the challenges of slow floating-point computation speeds and low compilation efficiency, a closed-loop control system with a field-programmable gate array–central processing unit (FPGA-CPU) dual-layer data-processing framework was developed. A feedback linearization method was designed to linearize the hysteresis nonlinearity of the framework, resulting in a switching-tracking error system. With the assistance of Lyapunov theory and an average dwell time technique, sufficient conditions were derived to ensure the asymptotic stability of the NN-SORC governing closed-loop system using the switching reference signals often encountered in realistic micro-/nano-scale detection and manufacturing processes. Finally, extensive comparative experiments were conducted to verify the effectiveness and superiority of the proposed NN-SORC scheme.","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"13 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.eng.2025.07.023","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study establishes a high-speed nano-positioning stage composed of a symmetrically driven structure with multiple parallel-bonded thin piezoelectric ceramic layers capable of performing micro- or nano-scale manipulations. Accordingly, a neural-network-based switching output regulation controller (NN-SORC) was developed to compensate for the associated hysteresis nonlinearity. To address the challenges of slow floating-point computation speeds and low compilation efficiency, a closed-loop control system with a field-programmable gate array–central processing unit (FPGA-CPU) dual-layer data-processing framework was developed. A feedback linearization method was designed to linearize the hysteresis nonlinearity of the framework, resulting in a switching-tracking error system. With the assistance of Lyapunov theory and an average dwell time technique, sufficient conditions were derived to ensure the asymptotic stability of the NN-SORC governing closed-loop system using the switching reference signals often encountered in realistic micro-/nano-scale detection and manufacturing processes. Finally, extensive comparative experiments were conducted to verify the effectiveness and superiority of the proposed NN-SORC scheme.
期刊介绍:
Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.