Integrating renewable resources and electric Vehicles: An approach for effective energy management in DC microgrid

IF 6 2区 工程技术 Q2 ENERGY & FUELS
M. Manikandan , R. Saravanan , G. Kannayeram , M. Saravanan
{"title":"Integrating renewable resources and electric Vehicles: An approach for effective energy management in DC microgrid","authors":"M. Manikandan ,&nbsp;R. Saravanan ,&nbsp;G. Kannayeram ,&nbsp;M. Saravanan","doi":"10.1016/j.solener.2025.113775","DOIUrl":null,"url":null,"abstract":"<div><div>Direct Current microgrids (DCMGs) are vital in reducing carbon footprints and combating global warming. However, maintaining stable DC bus voltage and ensuring efficient energy flow remains challenging. This manuscript proposes a hybrid method combining Parrot Optimization (PO) and Quantum Self-Attention Neural Networks (QSANN), named PO-QSANN, to improve the Energy Management System (EMS) of DCMGs with integrated Electric Vehicles (EVs) and photovoltaic (PV) generation. This work aims to reduce operational costs and enhance system efficiency by stabilizing the DC bus voltage. PO, inspired by the intelligent behavior of parrots, optimizes the PI controller’s gain parameters for effective energy management, while QSANN uses quantum-inspired attention mechanisms to predict the load demand accurately. The proposed PO-QSANN technqiue, excluded in MATLAB/Simulink, is contrasted with existing methods such as Artificial Rabbit’s Optimized Neural Network (ARONN), Genetic Algorithms (GA), Particle Swarm Optimization (PSO), and Whale Optimization Algorithm (WOA). Results show that PO-QSANN reduces the operational energy cost of DCMG to 0.4 $/kWh, outperforming ARONN at 0.5 $/kWh, PSO at 0.6 $/kWh, GA at 0.7 $/kWh, and WOA at 0.8 $/kWh. These findings highlight the superior capability of PO-QSANN in optimizing energy distribution and stabilizing DC bus voltage in DCMGs.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"299 ","pages":"Article 113775"},"PeriodicalIF":6.0000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X25005389","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Direct Current microgrids (DCMGs) are vital in reducing carbon footprints and combating global warming. However, maintaining stable DC bus voltage and ensuring efficient energy flow remains challenging. This manuscript proposes a hybrid method combining Parrot Optimization (PO) and Quantum Self-Attention Neural Networks (QSANN), named PO-QSANN, to improve the Energy Management System (EMS) of DCMGs with integrated Electric Vehicles (EVs) and photovoltaic (PV) generation. This work aims to reduce operational costs and enhance system efficiency by stabilizing the DC bus voltage. PO, inspired by the intelligent behavior of parrots, optimizes the PI controller’s gain parameters for effective energy management, while QSANN uses quantum-inspired attention mechanisms to predict the load demand accurately. The proposed PO-QSANN technqiue, excluded in MATLAB/Simulink, is contrasted with existing methods such as Artificial Rabbit’s Optimized Neural Network (ARONN), Genetic Algorithms (GA), Particle Swarm Optimization (PSO), and Whale Optimization Algorithm (WOA). Results show that PO-QSANN reduces the operational energy cost of DCMG to 0.4 $/kWh, outperforming ARONN at 0.5 $/kWh, PSO at 0.6 $/kWh, GA at 0.7 $/kWh, and WOA at 0.8 $/kWh. These findings highlight the superior capability of PO-QSANN in optimizing energy distribution and stabilizing DC bus voltage in DCMGs.
整合可再生资源和电动汽车:直流微电网的有效能源管理方法
直流微电网(dcmg)对于减少碳足迹和应对全球变暖至关重要。然而,保持稳定的直流母线电压和确保有效的能量流动仍然是一个挑战。本文提出一种鹦鹉优化(Parrot Optimization, PO)和量子自关注神经网络(Quantum Self-Attention Neural Networks, QSANN)相结合的混合方法,命名为PO-QSANN,以改进集成电动汽车和光伏发电的dcmg能源管理系统(EMS)。这项工作旨在通过稳定直流母线电压来降低运行成本并提高系统效率。PO受鹦鹉智能行为的启发,优化PI控制器的增益参数,实现有效的能量管理,QSANN利用量子启发的注意力机制准确预测负载需求。提出的PO-QSANN技术在MATLAB/Simulink中被排除,并与现有的人工兔子优化神经网络(ARONN)、遗传算法(GA)、粒子群算法(PSO)和鲸鱼优化算法(WOA)等方法进行了对比。结果表明,PO-QSANN将DCMG的运行能源成本降低至0.4美元/千瓦时,优于ARONN(0.5美元/千瓦时)、PSO(0.6美元/千瓦时)、GA(0.7美元/千瓦时)和WOA(0.8美元/千瓦时)。这些发现突出了PO-QSANN在优化DCMGs中的能量分配和稳定直流母线电压方面的卓越能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy
Solar Energy 工程技术-能源与燃料
CiteScore
13.90
自引率
9.00%
发文量
0
审稿时长
47 days
期刊介绍: Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信