Ketavath Kumar Naik , Chirukuri Naga Phaneendra , Tathababu Addepalli , Ahmed J.A. Al-Gburi
{"title":"Quad-port wheel-shaped MIMO patch antenna system deployed at UWB application for 6G terahertz communications","authors":"Ketavath Kumar Naik , Chirukuri Naga Phaneendra , Tathababu Addepalli , Ahmed J.A. Al-Gburi","doi":"10.1016/j.photonics.2025.101430","DOIUrl":null,"url":null,"abstract":"<div><div>A quad-port wheel-shaped MIMO patch (QWMP) antenna featuring a circular complementary split-ring resonator (CSRR) slot is proposed for 6G terahertz communication. The radiating elements are configured in a pattern diversity arrangement to enhance diversity performance and minimize mutual coupling. The QWMP antenna is fabricated on Kapton polyimide with overall dimensions of 400 × 400 × 20 µm³ . It exhibits a wide bandwidth (S₁₁ < −10 dB) of 0.94 THz, covering the range from 1.93 THz to 2.87 THz. The QWMP antenna achieves a high gain of 8.12 dBi and 9.41 dBi at 2.00 THz and 2.75 THz, respectively. The values of ECC < 0.001 and DG > 9.995 indicate that the QWMP antenna has excellent diversity performance, making it suitable for high-speed, low-latency 6 G communication systems. The simulated results of key antenna parameters, including radiation patterns, gain, and diversity characteristics, are examined and presented. The proposed antenna demonstrates significant potential for next-generation terahertz communication applications.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"66 ","pages":"Article 101430"},"PeriodicalIF":2.9000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics and Nanostructures-Fundamentals and Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156944102500080X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A quad-port wheel-shaped MIMO patch (QWMP) antenna featuring a circular complementary split-ring resonator (CSRR) slot is proposed for 6G terahertz communication. The radiating elements are configured in a pattern diversity arrangement to enhance diversity performance and minimize mutual coupling. The QWMP antenna is fabricated on Kapton polyimide with overall dimensions of 400 × 400 × 20 µm³ . It exhibits a wide bandwidth (S₁₁ < −10 dB) of 0.94 THz, covering the range from 1.93 THz to 2.87 THz. The QWMP antenna achieves a high gain of 8.12 dBi and 9.41 dBi at 2.00 THz and 2.75 THz, respectively. The values of ECC < 0.001 and DG > 9.995 indicate that the QWMP antenna has excellent diversity performance, making it suitable for high-speed, low-latency 6 G communication systems. The simulated results of key antenna parameters, including radiation patterns, gain, and diversity characteristics, are examined and presented. The proposed antenna demonstrates significant potential for next-generation terahertz communication applications.
期刊介绍:
This journal establishes a dedicated channel for physicists, material scientists, chemists, engineers and computer scientists who are interested in photonics and nanostructures, and especially in research related to photonic crystals, photonic band gaps and metamaterials. The Journal sheds light on the latest developments in this growing field of science that will see the emergence of faster telecommunications and ultimately computers that use light instead of electrons to connect components.