Chaeyeong Yun, Yu Hwan Kim, Sung Jae Lee, Su Jin Im, Kang Ryoung Park
{"title":"Artificial intelligence-based semi-supervised crop and weed semantic segmentation","authors":"Chaeyeong Yun, Yu Hwan Kim, Sung Jae Lee, Su Jin Im, Kang Ryoung Park","doi":"10.1016/j.asoc.2025.113662","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate segmentation of crop and weed by farming robot camera can increase crop production and reduce unnecessary herbicide, which is a fundamental task in the field of sustainable and precision agriculture. However, obtaining the pixel-wise annotation of training data manually is expensive. As a solution to address this limitation, semi-supervised learning leverages a small amount of labeled data and a large amount of unlabeled data for learning. In this context, we propose a network based on vector quantization and prototype loss for semi-supervised crop and weed semantic segmentation (VQP-Net). VQP-Net achieves a strong performance in terms of consistency regularization through the implementation of a vector quantization module and prototype loss, and is capable of extracting discriminative features of crops and weeds, which are often indistinguishable. We conducted experiments using the proposed method with three open datasets: BoniRob, crop/weed field image, and rice seedling and weed datasets. The crop and weed segmentation accuracies based on mean intersection over union (<em>mIOU</em>) for the three datasets were 0.8643, 0.8329, and 0.7623, respectively, demonstrating that this method outperformed the state-of-the-art methods.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":"183 ","pages":"Article 113662"},"PeriodicalIF":7.2000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494625009731","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate segmentation of crop and weed by farming robot camera can increase crop production and reduce unnecessary herbicide, which is a fundamental task in the field of sustainable and precision agriculture. However, obtaining the pixel-wise annotation of training data manually is expensive. As a solution to address this limitation, semi-supervised learning leverages a small amount of labeled data and a large amount of unlabeled data for learning. In this context, we propose a network based on vector quantization and prototype loss for semi-supervised crop and weed semantic segmentation (VQP-Net). VQP-Net achieves a strong performance in terms of consistency regularization through the implementation of a vector quantization module and prototype loss, and is capable of extracting discriminative features of crops and weeds, which are often indistinguishable. We conducted experiments using the proposed method with three open datasets: BoniRob, crop/weed field image, and rice seedling and weed datasets. The crop and weed segmentation accuracies based on mean intersection over union (mIOU) for the three datasets were 0.8643, 0.8329, and 0.7623, respectively, demonstrating that this method outperformed the state-of-the-art methods.
期刊介绍:
Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities.
Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.