{"title":"On the optimal duplexing strategy for wireless-powered communication networks","authors":"Arman Ahmadian , Hyuncheol Park","doi":"10.1016/j.phycom.2025.102729","DOIUrl":null,"url":null,"abstract":"<div><div>Due to its simplicity and lack of channel state information (CSI) feedback requirements, time division duplexing (TDD) has been the preferred duplexing method in wireless-powered communication networks (WPCNs), while the advantages of frequency-division duplexing (FDD) has remained largely unexplored. Yet, the decision between TDD and FDD goes beyond CSI considerations, as it depends on various system parameters and operational trade-offs not previously considered. In FDD, the transmitter remains active throughout the entire frame duration, enabling more effective utilization of the maximum instantaneous transmit power of the hybrid access point (HAP). In contrast, TDD exploits the full bandwidth (BW), thereby making better use of the feasible maximum power spectral density (PSD). Finally, while the constraint of maximum time-averaged transmit power in FDD closely resembles the effect of the maximum instantaneous transmit power constraint, they have different effects on the operation of the TDD-WPCN.</div><div>To analyze these effects, we thoroughly investigate both TDD-WPCN and FDD-WPCN and characterize their respective operating regions. Our extensive theoretical and simulation results reveal that selecting between the two schemes involves a complex, multidimensional trade-off, warranting careful consideration in system design. We demonstrate that, under certain assumptions, the throughput of an FDD-WPCN can be substantially greater than that of the same WPCN operating in TDD mode. Furthermore we prove that, under certain conditions, a single-node FDD-WPCN can achieve a two-fold increase in throughput compared to a single-node TDD-WPCN.</div></div>","PeriodicalId":48707,"journal":{"name":"Physical Communication","volume":"72 ","pages":"Article 102729"},"PeriodicalIF":2.2000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Communication","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874490725001326","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Due to its simplicity and lack of channel state information (CSI) feedback requirements, time division duplexing (TDD) has been the preferred duplexing method in wireless-powered communication networks (WPCNs), while the advantages of frequency-division duplexing (FDD) has remained largely unexplored. Yet, the decision between TDD and FDD goes beyond CSI considerations, as it depends on various system parameters and operational trade-offs not previously considered. In FDD, the transmitter remains active throughout the entire frame duration, enabling more effective utilization of the maximum instantaneous transmit power of the hybrid access point (HAP). In contrast, TDD exploits the full bandwidth (BW), thereby making better use of the feasible maximum power spectral density (PSD). Finally, while the constraint of maximum time-averaged transmit power in FDD closely resembles the effect of the maximum instantaneous transmit power constraint, they have different effects on the operation of the TDD-WPCN.
To analyze these effects, we thoroughly investigate both TDD-WPCN and FDD-WPCN and characterize their respective operating regions. Our extensive theoretical and simulation results reveal that selecting between the two schemes involves a complex, multidimensional trade-off, warranting careful consideration in system design. We demonstrate that, under certain assumptions, the throughput of an FDD-WPCN can be substantially greater than that of the same WPCN operating in TDD mode. Furthermore we prove that, under certain conditions, a single-node FDD-WPCN can achieve a two-fold increase in throughput compared to a single-node TDD-WPCN.
期刊介绍:
PHYCOM: Physical Communication is an international and archival journal providing complete coverage of all topics of interest to those involved in all aspects of physical layer communications. Theoretical research contributions presenting new techniques, concepts or analyses, applied contributions reporting on experiences and experiments, and tutorials are published.
Topics of interest include but are not limited to:
Physical layer issues of Wireless Local Area Networks, WiMAX, Wireless Mesh Networks, Sensor and Ad Hoc Networks, PCS Systems; Radio access protocols and algorithms for the physical layer; Spread Spectrum Communications; Channel Modeling; Detection and Estimation; Modulation and Coding; Multiplexing and Carrier Techniques; Broadband Wireless Communications; Wireless Personal Communications; Multi-user Detection; Signal Separation and Interference rejection: Multimedia Communications over Wireless; DSP Applications to Wireless Systems; Experimental and Prototype Results; Multiple Access Techniques; Space-time Processing; Synchronization Techniques; Error Control Techniques; Cryptography; Software Radios; Tracking; Resource Allocation and Inference Management; Multi-rate and Multi-carrier Communications; Cross layer Design and Optimization; Propagation and Channel Characterization; OFDM Systems; MIMO Systems; Ultra-Wideband Communications; Cognitive Radio System Architectures; Platforms and Hardware Implementations for the Support of Cognitive, Radio Systems; Cognitive Radio Resource Management and Dynamic Spectrum Sharing.