Minghan Yu , Changming Cao , Zicheng Sa , Chen Zhang , Jiayun Feng , Qing Sun , Xinyang Ma , Jianchao Liang , Yuxin Sun , Rui Yin , Youyou Chen , Yaming Liu , Kaizheng Gao , Chao Yang , Xiaoqin Zeng , Paul K. Chu , Yanhong Tian
{"title":"Liquid metal alchemy: Unlocking self-healing gallium-based materials for next-generation electronics","authors":"Minghan Yu , Changming Cao , Zicheng Sa , Chen Zhang , Jiayun Feng , Qing Sun , Xinyang Ma , Jianchao Liang , Yuxin Sun , Rui Yin , Youyou Chen , Yaming Liu , Kaizheng Gao , Chao Yang , Xiaoqin Zeng , Paul K. Chu , Yanhong Tian","doi":"10.1016/j.mser.2025.101073","DOIUrl":null,"url":null,"abstract":"<div><div>Liquid metals, a novel functional material, show significant potential for diverse self-healing applications due to their remarkable physical and chemical properties. Their low melting points enable rapid flow in low-temperature environments, greatly enhancing material responsiveness during damage repair. The high electrical conductivity provides distinct advantages for restoring broken circuits or conductive pathways, while their fluidity offers a reliable foundation for filling cracks and reconstructing both mechanical structures and electrical functions. These unique characteristics allow liquid metals to demonstrate excellent stability and reliability in various complex environments, satisfying demands for high-performance materials under challenging conditions. Critically, these properties enable applications spanning stretchable electronics, biomedical devices, and energy systems. In the specific context of self-healing batteries, the high chemical reactivity of liquid metals facilitates alloying and de-alloying reactions, significantly improving cycle efficiency and lifespan. This paper provides a systematic review of the fundamental properties, application forms, and self-healing mechanisms of liquid metals. The healing process of electrical properties in the field of flexible materials and the key characteristics of mechanically reversible repair in a damaged environment are discussed. Meanwhile, the mechanism of liquid metals in the self-healing batteries is analyzed, including the effect of alloying and de-alloying on the optimization of battery performance. Finally, the challenges associated with liquid metals and self-healing materials are thoroughly examined, and potential solutions are proposed to address these issues, offering valuable theoretical and practical insights for future research and applications of liquid metal-based materials.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"166 ","pages":"Article 101073"},"PeriodicalIF":31.6000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X25001512","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Liquid metals, a novel functional material, show significant potential for diverse self-healing applications due to their remarkable physical and chemical properties. Their low melting points enable rapid flow in low-temperature environments, greatly enhancing material responsiveness during damage repair. The high electrical conductivity provides distinct advantages for restoring broken circuits or conductive pathways, while their fluidity offers a reliable foundation for filling cracks and reconstructing both mechanical structures and electrical functions. These unique characteristics allow liquid metals to demonstrate excellent stability and reliability in various complex environments, satisfying demands for high-performance materials under challenging conditions. Critically, these properties enable applications spanning stretchable electronics, biomedical devices, and energy systems. In the specific context of self-healing batteries, the high chemical reactivity of liquid metals facilitates alloying and de-alloying reactions, significantly improving cycle efficiency and lifespan. This paper provides a systematic review of the fundamental properties, application forms, and self-healing mechanisms of liquid metals. The healing process of electrical properties in the field of flexible materials and the key characteristics of mechanically reversible repair in a damaged environment are discussed. Meanwhile, the mechanism of liquid metals in the self-healing batteries is analyzed, including the effect of alloying and de-alloying on the optimization of battery performance. Finally, the challenges associated with liquid metals and self-healing materials are thoroughly examined, and potential solutions are proposed to address these issues, offering valuable theoretical and practical insights for future research and applications of liquid metal-based materials.
期刊介绍:
Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews.
The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.