Nishi Gondhiya, Abd Ur Rehman, Daniel Andreescu, Silvana Andreescu
{"title":"Portable electrochemical sensors for per- and polyfluoroalkyl substances: Design, challenges, and opportunities for field deployment","authors":"Nishi Gondhiya, Abd Ur Rehman, Daniel Andreescu, Silvana Andreescu","doi":"10.1016/j.coelec.2025.101725","DOIUrl":null,"url":null,"abstract":"<div><div>The widespread presence of per- and polyfluoroalkyl substances (PFAS) in the environment presents a complex global challenge due to their persistence, resistance to degradation, and harmful effects. Electrochemical sensors offer the sensitivity needed to detect PFAS at regulatory limits and show promise for large-scale environmental monitoring without the need for costly laboratory equipment. This review highlights recent advances in electrochemical sensing technologies and their potential as field-deployable devices for rapid screening and on site PFAS detection. Examples include sensor platforms based on redox-active reporters, molecularly imprinted polymers (MIPs), redox dyes, metal organic frameworks (MOFs), covalent organic frameworks (COFs), nanoparticle impacts, and nanobubble and nanopore technologies, coupled with direct or indirect signal transduction strategies. We discuss promising sensor designs and detection mechanisms and outline the key challenges and future directions needed to advance their practical deployment in environmental monitoring applications.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"53 ","pages":"Article 101725"},"PeriodicalIF":7.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Electrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451910325000845","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The widespread presence of per- and polyfluoroalkyl substances (PFAS) in the environment presents a complex global challenge due to their persistence, resistance to degradation, and harmful effects. Electrochemical sensors offer the sensitivity needed to detect PFAS at regulatory limits and show promise for large-scale environmental monitoring without the need for costly laboratory equipment. This review highlights recent advances in electrochemical sensing technologies and their potential as field-deployable devices for rapid screening and on site PFAS detection. Examples include sensor platforms based on redox-active reporters, molecularly imprinted polymers (MIPs), redox dyes, metal organic frameworks (MOFs), covalent organic frameworks (COFs), nanoparticle impacts, and nanobubble and nanopore technologies, coupled with direct or indirect signal transduction strategies. We discuss promising sensor designs and detection mechanisms and outline the key challenges and future directions needed to advance their practical deployment in environmental monitoring applications.
期刊介绍:
The development of the Current Opinion journals stemmed from the acknowledgment of the growing challenge for specialists to stay abreast of the expanding volume of information within their field. In Current Opinion in Electrochemistry, they help the reader by providing in a systematic manner:
1.The views of experts on current advances in electrochemistry in a clear and readable form.
2.Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
In the realm of electrochemistry, the subject is divided into 12 themed sections, with each section undergoing an annual review cycle:
• Bioelectrochemistry • Electrocatalysis • Electrochemical Materials and Engineering • Energy Storage: Batteries and Supercapacitors • Energy Transformation • Environmental Electrochemistry • Fundamental & Theoretical Electrochemistry • Innovative Methods in Electrochemistry • Organic & Molecular Electrochemistry • Physical & Nano-Electrochemistry • Sensors & Bio-sensors •