Zachary C. Drake, Elijah H. Day, Paul D. Toth, Steffen Lindert
{"title":"Deep-learning structure elucidation from single-mutant deep mutational scanning","authors":"Zachary C. Drake, Elijah H. Day, Paul D. Toth, Steffen Lindert","doi":"10.1038/s41467-025-62261-4","DOIUrl":null,"url":null,"abstract":"<p>Deep learning has revolutionized the field of protein structure prediction. AlphaFold2, a deep neural network, vastly outperformed previous algorithms to provide near atomic-level accuracy when predicting protein structures. Despite its success, there still are limitations which prevent accurate predictions for numerous protein systems. Here we show that sparse residue burial restraints from deep mutational scanning (DMS) can refine AlphaFold2 to significantly enhance results. Burial information extracted from DMS is used to explicitly guide residue placement during structure generation. DMS-Fold was validated on both simulated and experimental single-mutant DMS, with DMS-Fold outperforming AlphaFold2 for 88% of protein targets and with 252 proteins having an improvement greater than 0.1 in TM-Score. DMS-Fold is free and publicly available: [https://github.com/LindertLab/DMS-Fold].</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"131 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62261-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning has revolutionized the field of protein structure prediction. AlphaFold2, a deep neural network, vastly outperformed previous algorithms to provide near atomic-level accuracy when predicting protein structures. Despite its success, there still are limitations which prevent accurate predictions for numerous protein systems. Here we show that sparse residue burial restraints from deep mutational scanning (DMS) can refine AlphaFold2 to significantly enhance results. Burial information extracted from DMS is used to explicitly guide residue placement during structure generation. DMS-Fold was validated on both simulated and experimental single-mutant DMS, with DMS-Fold outperforming AlphaFold2 for 88% of protein targets and with 252 proteins having an improvement greater than 0.1 in TM-Score. DMS-Fold is free and publicly available: [https://github.com/LindertLab/DMS-Fold].
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.