Human interpretable grammar encodes multicellular systems biology models to democratize virtual cell laboratories

IF 45.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Cell Pub Date : 2025-07-26 DOI:10.1016/j.cell.2025.06.048
Jeanette A.I. Johnson, Daniel R. Bergman, Heber L. Rocha, David L. Zhou, Eric Cramer, Ian C. Mclean, Yoseph W. Dance, Max Booth, Zachary Nicholas, Tamara Lopez-Vidal, Atul Deshpande, Randy Heiland, Elmar Bucher, Fatemeh Shojaeian, Matthew Dunworth, André Forjaz, Michael Getz, Inês Godet, Furkan Kurtoglu, Melissa Lyman, Paul Macklin
{"title":"Human interpretable grammar encodes multicellular systems biology models to democratize virtual cell laboratories","authors":"Jeanette A.I. Johnson, Daniel R. Bergman, Heber L. Rocha, David L. Zhou, Eric Cramer, Ian C. Mclean, Yoseph W. Dance, Max Booth, Zachary Nicholas, Tamara Lopez-Vidal, Atul Deshpande, Randy Heiland, Elmar Bucher, Fatemeh Shojaeian, Matthew Dunworth, André Forjaz, Michael Getz, Inês Godet, Furkan Kurtoglu, Melissa Lyman, Paul Macklin","doi":"10.1016/j.cell.2025.06.048","DOIUrl":null,"url":null,"abstract":"Cells interact as dynamically evolving ecosystems. While recent single-cell and spatial multi-omics technologies quantify individual cell characteristics, predicting their evolution requires mathematical modeling. We propose a conceptual framework—a cell behavior hypothesis grammar—that uses natural language statements (cell rules) to create mathematical models. This enables systematic integration of biological knowledge and multi-omics data to generate <em>in silico</em> models, enabling virtual “thought experiments” that test and expand our understanding of multicellular systems and generate new testable hypotheses. This paper motivates and describes the grammar, offers a reference implementation, and demonstrates its use in developing both <em>de novo</em> mechanistic models and those informed by multi-omics data. We show its potential through examples in cancer and its broader applicability in simulating brain development. This approach bridges biological, clinical, and systems biology research for mathematical modeling at scale, allowing the community to predict emergent multicellular behavior.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"720 1","pages":""},"PeriodicalIF":45.5000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2025.06.048","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cells interact as dynamically evolving ecosystems. While recent single-cell and spatial multi-omics technologies quantify individual cell characteristics, predicting their evolution requires mathematical modeling. We propose a conceptual framework—a cell behavior hypothesis grammar—that uses natural language statements (cell rules) to create mathematical models. This enables systematic integration of biological knowledge and multi-omics data to generate in silico models, enabling virtual “thought experiments” that test and expand our understanding of multicellular systems and generate new testable hypotheses. This paper motivates and describes the grammar, offers a reference implementation, and demonstrates its use in developing both de novo mechanistic models and those informed by multi-omics data. We show its potential through examples in cancer and its broader applicability in simulating brain development. This approach bridges biological, clinical, and systems biology research for mathematical modeling at scale, allowing the community to predict emergent multicellular behavior.

Abstract Image

人类可解释的语法编码多细胞系统生物学模型民主化虚拟细胞实验室
细胞作为动态进化的生态系统相互作用。虽然最近的单细胞和空间多组学技术量化了单个细胞的特征,但预测它们的进化需要数学建模。我们提出了一个概念框架——细胞行为假设语法——它使用自然语言语句(细胞规则)来创建数学模型。这使得生物知识和多组学数据的系统集成能够生成计算机模型,从而实现虚拟的“思想实验”,从而测试和扩展我们对多细胞系统的理解,并产生新的可测试的假设。本文对语法进行了激励和描述,提供了一个参考实现,并演示了它在开发新机制模型和由多组学数据提供信息的模型中的使用。我们通过癌症的例子展示了它的潜力,以及它在模拟大脑发育方面的广泛适用性。这种方法将生物学、临床和系统生物学的研究结合起来,进行大规模的数学建模,使社区能够预测紧急的多细胞行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell
Cell 生物-生化与分子生物学
CiteScore
110.00
自引率
0.80%
发文量
396
审稿时长
2 months
期刊介绍: Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO). The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries. In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信