Development of Plasmonic Fiber-Optic Probes for Highly Sensitive and Selective Detection of Dopamine via Citrate–Fe3+–Dopamine Chelate Complexation

IF 3.5 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
T.Bich-Ngoc Vo, Sang-Wha Lee
{"title":"Development of Plasmonic Fiber-Optic Probes for Highly Sensitive and Selective Detection of Dopamine via Citrate–Fe3+–Dopamine Chelate Complexation","authors":"T.Bich-Ngoc Vo, Sang-Wha Lee","doi":"10.1039/d5dt00755k","DOIUrl":null,"url":null,"abstract":"Dopamine (DA) is a key biomarker for neurodegenerative disorders. One-dimensional (1D) optical fiber (OF) sensing offers remote, real-time detection but faces a limited signal reflection of 5–10% compared to two- or three-dimensional (2D/3D) planar configurations, restricting detection efficiency to a nanomolar threshold. To overcome these limitations, we developed a novel fiber-optic sensing system (FOSS) by integrating gold-silver core–shell nanostars (Au@AgNSs), functionalized with a citrate-ferric (Fe3+) complex, onto the flattened facets of OFs, creating highly effective SERS-active substrates for enhancing the sensitivity and selectivity of DA. This customized design exploits the synergistic interplay of electromagnetic and chemical enhancements, primarily through Fe3+–DA chelation, significantly amplifying the SERS signals. Optimizing plasmonic nanostructures, ferric ion concentration, and stepwise Fe3+ addition improved sensitivity, achieving a sub-nanomolar (1.61ⅹ10⁻10 M) detection limit, surpassing previous OF-based sensors. Moreover, its strong affinity for DA conferred exceptional selectivity, allowing it to effectively distinguish DA from other coexisting biomolecules. Our work advances bio-optrode sensing technologies for in-situ sensitive detection of trace analytes, offering significant potential for applications in healthcare and biomedical fields, particularly in diagnosing and monitoring dopaminergic dysfunction-related diseases.","PeriodicalId":71,"journal":{"name":"Dalton Transactions","volume":"16 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dalton Transactions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5dt00755k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Dopamine (DA) is a key biomarker for neurodegenerative disorders. One-dimensional (1D) optical fiber (OF) sensing offers remote, real-time detection but faces a limited signal reflection of 5–10% compared to two- or three-dimensional (2D/3D) planar configurations, restricting detection efficiency to a nanomolar threshold. To overcome these limitations, we developed a novel fiber-optic sensing system (FOSS) by integrating gold-silver core–shell nanostars (Au@AgNSs), functionalized with a citrate-ferric (Fe3+) complex, onto the flattened facets of OFs, creating highly effective SERS-active substrates for enhancing the sensitivity and selectivity of DA. This customized design exploits the synergistic interplay of electromagnetic and chemical enhancements, primarily through Fe3+–DA chelation, significantly amplifying the SERS signals. Optimizing plasmonic nanostructures, ferric ion concentration, and stepwise Fe3+ addition improved sensitivity, achieving a sub-nanomolar (1.61ⅹ10⁻10 M) detection limit, surpassing previous OF-based sensors. Moreover, its strong affinity for DA conferred exceptional selectivity, allowing it to effectively distinguish DA from other coexisting biomolecules. Our work advances bio-optrode sensing technologies for in-situ sensitive detection of trace analytes, offering significant potential for applications in healthcare and biomedical fields, particularly in diagnosing and monitoring dopaminergic dysfunction-related diseases.
柠檬酸盐- fe3 + -多巴胺螯合物高灵敏度和选择性检测等离子体光纤探针的研制
多巴胺(DA)是神经退行性疾病的关键生物标志物。一维(1D)光纤(OF)传感提供远程、实时检测,但与二维或三维(2D/3D)平面配置相比,其信号反射有限,仅为5-10%,将检测效率限制在纳摩尔阈值。为了克服这些限制,我们开发了一种新型光纤传感系统(FOSS),通过将金-银核-壳纳米星(Au@AgNSs)与柠檬酸-铁(Fe3+)配合物功能化,集成到OFs的平坦表面上,创造了高效的sers活性底物,以提高DA的灵敏度和选择性。这种定制设计利用电磁和化学增强的协同相互作用,主要通过Fe3+ -DA螯合,显着放大SERS信号。优化等离子体纳米结构、铁离子浓度和逐步添加Fe3+提高了灵敏度,实现了亚纳摩尔(1.61ⅹ10⁻10m)的检测极限,超过了以前基于ofl的传感器。此外,它对DA的强亲和力赋予了特殊的选择性,使其能够有效地将DA与其他共存的生物分子区分开来。我们的工作推进了痕量分析物原位敏感检测的生物光电传感技术,在医疗保健和生物医学领域,特别是在诊断和监测多巴胺能功能障碍相关疾病方面提供了巨大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Dalton Transactions
Dalton Transactions 化学-无机化学与核化学
CiteScore
6.60
自引率
7.50%
发文量
1832
审稿时长
1.5 months
期刊介绍: Dalton Transactions is a journal for all areas of inorganic chemistry, which encompasses the organometallic, bioinorganic and materials chemistry of the elements, with applications including synthesis, catalysis, energy conversion/storage, electrical devices and medicine. Dalton Transactions welcomes high-quality, original submissions in all of these areas and more, where the advancement of knowledge in inorganic chemistry is significant.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信