Yumei Zhou, Mengxuan Li, Ke Jin, Mingyue Wen, Hua Qin, Yue Xu, Chunmei Wang, Xuan Zhang, Xuetao Cao
{"title":"The RNA-binding protein RRP1 brakes macrophage one-carbon metabolism to suppress autoinflammation","authors":"Yumei Zhou, Mengxuan Li, Ke Jin, Mingyue Wen, Hua Qin, Yue Xu, Chunmei Wang, Xuan Zhang, Xuetao Cao","doi":"10.1038/s41467-025-62173-3","DOIUrl":null,"url":null,"abstract":"<p>RNA-binding proteins (RBP) are important for the initiation and resolution of inflammation, so better understanding of RBP-RNA interactions and their crosstalk with metabolism may provide alternate targets to controlling inflammation. Here we establish global RNA-protein interactome purification (GRPIp) to profile the RBP landscape in inflammatory primary macrophages and identify ribosomal RNA processing 1 (RRP1) as a suppressor of inflammatory innate responses. Mechanistically, RRP1 binds nuclear thymidylate synthetase (<i>Tyms</i>) transcript and decreases TYMS expression post-transcriptionally in inflammatory macrophages, consequently suppressing folate metabolism cycle and inhibiting one-carbon metabolism-driven inflammation. Myeloid-specific RRP1-deficient mice develop severe experimental arthritis with increased pro-inflammatory cytokines and immunologic injury. Meanwhile, in patients with rheumatoid arthritis, <i>RRP1</i> expression in peripheral blood monocytes negatively correlates with <i>TYMS</i> expression and serum IL-1β levels. Our results thus suggest that RRP1 acts as an anti-inflammatory factor through braking one-carbon metabolism post-transcriptionally, thereby implicating potential strategies for controlling autoinflammation.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"17 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62173-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
RNA-binding proteins (RBP) are important for the initiation and resolution of inflammation, so better understanding of RBP-RNA interactions and their crosstalk with metabolism may provide alternate targets to controlling inflammation. Here we establish global RNA-protein interactome purification (GRPIp) to profile the RBP landscape in inflammatory primary macrophages and identify ribosomal RNA processing 1 (RRP1) as a suppressor of inflammatory innate responses. Mechanistically, RRP1 binds nuclear thymidylate synthetase (Tyms) transcript and decreases TYMS expression post-transcriptionally in inflammatory macrophages, consequently suppressing folate metabolism cycle and inhibiting one-carbon metabolism-driven inflammation. Myeloid-specific RRP1-deficient mice develop severe experimental arthritis with increased pro-inflammatory cytokines and immunologic injury. Meanwhile, in patients with rheumatoid arthritis, RRP1 expression in peripheral blood monocytes negatively correlates with TYMS expression and serum IL-1β levels. Our results thus suggest that RRP1 acts as an anti-inflammatory factor through braking one-carbon metabolism post-transcriptionally, thereby implicating potential strategies for controlling autoinflammation.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.