Jiabing Zhang, Zilong He, Bin Shen, Jiang Li, Yongtao Tang, Shuhuai Pang, Xiaolin Tian, Shuang Wang, Fengyu Li
{"title":"Mechanically Tunable Composite Hydrogel for Multi-Gesture Motion Monitoring.","authors":"Jiabing Zhang, Zilong He, Bin Shen, Jiang Li, Yongtao Tang, Shuhuai Pang, Xiaolin Tian, Shuang Wang, Fengyu Li","doi":"10.3390/bios15070412","DOIUrl":null,"url":null,"abstract":"<p><p>Intrinsic conductive ionic hydrogels, endowed with excellent mechanical properties, hold significant promise for applications in wearable and implantable electronics. However, the complexity of exercise and athletics calls for mechanical tunability, facile processability and high conductivity of wearable sensors, which remains a persistent challenge. In this study, we developed a mechanically tunable and high ionic conductive hydrogel patch to approach multi-gesture or motion monitoring. Through adjustment of the ratio of amino trimethylene phosphonic acid (ATMP) and poly(vinyl alcohol) (PVA), the composite hydrogel attains tunable mechanical strength (varying from 50 kPa to 730 kPa), remarkable stretchability (reaching up to 1900% strain), high conductivity (measuring 15.43 S/m), and strong linear sensitivity (with a gauge factor of 2.34 within 100% strain). Benefitting with the tunable mechanical sensitivity, the composite hydrogel patch can perform subtle movement monitoring, such as epidermal pulses or pronounced muscle vibrations; meanwhile, it can also recognize and detect major motions, such as hand gestures. The mechanically tunable composite hydrogel contributes a versatile sensing platform for health or athletic monitoring, with wide and sensitive adoptability.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 7","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12293851/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15070412","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Intrinsic conductive ionic hydrogels, endowed with excellent mechanical properties, hold significant promise for applications in wearable and implantable electronics. However, the complexity of exercise and athletics calls for mechanical tunability, facile processability and high conductivity of wearable sensors, which remains a persistent challenge. In this study, we developed a mechanically tunable and high ionic conductive hydrogel patch to approach multi-gesture or motion monitoring. Through adjustment of the ratio of amino trimethylene phosphonic acid (ATMP) and poly(vinyl alcohol) (PVA), the composite hydrogel attains tunable mechanical strength (varying from 50 kPa to 730 kPa), remarkable stretchability (reaching up to 1900% strain), high conductivity (measuring 15.43 S/m), and strong linear sensitivity (with a gauge factor of 2.34 within 100% strain). Benefitting with the tunable mechanical sensitivity, the composite hydrogel patch can perform subtle movement monitoring, such as epidermal pulses or pronounced muscle vibrations; meanwhile, it can also recognize and detect major motions, such as hand gestures. The mechanically tunable composite hydrogel contributes a versatile sensing platform for health or athletic monitoring, with wide and sensitive adoptability.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.