Justin P McMurray, Aubrey DeVries, Kendall Frazee, Bailey Sizemore, Kimberly L Branan, Richard Jennings, Gerard L Coté
{"title":"A Novel Wearable Device for Continuous Blood Pressure Monitoring Utilizing Strain Gauge Technology.","authors":"Justin P McMurray, Aubrey DeVries, Kendall Frazee, Bailey Sizemore, Kimberly L Branan, Richard Jennings, Gerard L Coté","doi":"10.3390/bios15070413","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiovascular disease (CVD) is the leading cause of global mortality, with hypertension affecting over one billion people. Current noninvasive blood pressure (BP) systems, like cuffs, suffer from discomfort and placement errors and lack continuous monitoring. Wearable solutions promise improvements, but technologies like photoplethysmography (PPG) and bioimpedance (BIOZ) face usability and clinical accuracy limitations. PPG is sensitive to skin tone and body mass index (BMI) variability, while BIOZ struggles with electrode contact and reusability. We present a novel, strain gauge-based wearable BP device that directly quantifies pressure via a dual transducer system, compensating for tissue deformation and external forces to enable continuous, accurate BP measurement. The reusable, energy-efficient, and compact design suits long-term daily use. A novel leg press protocol across 10 subjects (systolic: 71.04-241.42 mmHg, diastolic: 53.46-123.84 mmHg) validated its performance under dynamic conditions, achieving mean absolute errors of 2.45 ± 3.99 mmHg (systolic) and 1.59 ± 2.08 mmHg (diastolic). The device showed enhanced robustness compared to the Finapres, with less motion-induced noise. This technology significantly advances current methods by delivering continuous, real-time BP monitoring without reliance on electrodes, independent of skin tone, while maintaining a high accuracy and user comfort.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 7","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12294096/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15070413","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cardiovascular disease (CVD) is the leading cause of global mortality, with hypertension affecting over one billion people. Current noninvasive blood pressure (BP) systems, like cuffs, suffer from discomfort and placement errors and lack continuous monitoring. Wearable solutions promise improvements, but technologies like photoplethysmography (PPG) and bioimpedance (BIOZ) face usability and clinical accuracy limitations. PPG is sensitive to skin tone and body mass index (BMI) variability, while BIOZ struggles with electrode contact and reusability. We present a novel, strain gauge-based wearable BP device that directly quantifies pressure via a dual transducer system, compensating for tissue deformation and external forces to enable continuous, accurate BP measurement. The reusable, energy-efficient, and compact design suits long-term daily use. A novel leg press protocol across 10 subjects (systolic: 71.04-241.42 mmHg, diastolic: 53.46-123.84 mmHg) validated its performance under dynamic conditions, achieving mean absolute errors of 2.45 ± 3.99 mmHg (systolic) and 1.59 ± 2.08 mmHg (diastolic). The device showed enhanced robustness compared to the Finapres, with less motion-induced noise. This technology significantly advances current methods by delivering continuous, real-time BP monitoring without reliance on electrodes, independent of skin tone, while maintaining a high accuracy and user comfort.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.