Alireza Saberigarakani, Riya P Patel, Milad Almasian, Xinyuan Zhang, Jonathan Brewer, Sohail S Hassan, Jichen Chai, Juhyun Lee, Baowei Fei, Jie Yuan, Kelli Carroll, Yichen Ding
{"title":"Volumetric imaging and computation to explore contractile function in zebrafish hearts.","authors":"Alireza Saberigarakani, Riya P Patel, Milad Almasian, Xinyuan Zhang, Jonathan Brewer, Sohail S Hassan, Jichen Chai, Juhyun Lee, Baowei Fei, Jie Yuan, Kelli Carroll, Yichen Ding","doi":"10.1016/j.crmeth.2025.101113","DOIUrl":null,"url":null,"abstract":"<p><p>Novel insights into cardiac contractile dysfunction at the cellular level could deepen understanding of arrhythmia and heart injury, which are leading causes of morbidity and mortality worldwide. We present a comprehensive experimental and computational framework combining light-field microscopy and single-cell tracking to investigate real-time volumetric data in live zebrafish hearts, which share structural and electrical similarities to the human heart. Our system acquires 200 vol/s with lateral resolution of up to 5.02 ± 0.54 μm and axial resolution of 9.02 ± 1.11 μm across the whole depth using an expectation-maximization-smoothed deconvolution algorithm. We apply a deep-learning approach to quantify cell displacement and velocity in blood flow and myocardial motion and to perform real-time volumetric tracking from end-systole to end-diastole within a virtual reality environment. This capability delivers high-speed and high-resolution imaging of cardiac contractility at single-cell resolution over multiple cycles, supporting in-depth investigation of intercellular interactions in health and disease.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"101113"},"PeriodicalIF":4.5000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12461643/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2025.101113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Novel insights into cardiac contractile dysfunction at the cellular level could deepen understanding of arrhythmia and heart injury, which are leading causes of morbidity and mortality worldwide. We present a comprehensive experimental and computational framework combining light-field microscopy and single-cell tracking to investigate real-time volumetric data in live zebrafish hearts, which share structural and electrical similarities to the human heart. Our system acquires 200 vol/s with lateral resolution of up to 5.02 ± 0.54 μm and axial resolution of 9.02 ± 1.11 μm across the whole depth using an expectation-maximization-smoothed deconvolution algorithm. We apply a deep-learning approach to quantify cell displacement and velocity in blood flow and myocardial motion and to perform real-time volumetric tracking from end-systole to end-diastole within a virtual reality environment. This capability delivers high-speed and high-resolution imaging of cardiac contractility at single-cell resolution over multiple cycles, supporting in-depth investigation of intercellular interactions in health and disease.