{"title":"New QSAR Models to Predict Human Transthyretin Disruption by Per- and Polyfluoroalkyl Substances (PFAS): Development and Application.","authors":"Marco Evangelista, Nicola Chirico, Ester Papa","doi":"10.3390/toxics13070590","DOIUrl":null,"url":null,"abstract":"<p><p>Per- and polyfluoroalkyl substances (PFAS) are of concern because of their potential thyroid hormone system disruption by binding to human transthyretin (hTTR). However, the amount of experimental data is scarce. In this work, new classification and regression QSARs were developed to predict the hTTR disruption based on experimental data measured for 134 PFAS. Bootstrapping, randomization procedures, and external validation were used to check for overfitting, to avoid random correlations, and to evaluate the predictivity of the QSARs, respectively. The best QSARs were characterized by good performances (e.g., training and test accuracies in classification of 0.89 and 0.85, respectively; R<sup>2</sup>, Q<sup>2</sup><sub>loo</sub>, and Q<sup>2</sup><sub>F3</sub> in regression of 0.81, 0.77, and 0.82, respectively) and significantly broader domains compared to the few existing similar models. The application of QSARs application to the OECD List of PFAS allowed for the identification of structural categories of major concern, such as per- and polyfluoroalkyl ether-based, perfluoroalkyl carbonyl, and perfluoroalkane sulfonyl compounds. Forty-nine PFAS showed a stronger binding affinity to hTTR than the natural ligand T4. Uncertainty quantification for each model and prediction further enhanced the reliability assessment of predictions. The implementation of the new QSARs in non-commercial software facilitates their application to support future research efforts and regulatory actions.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"13 7","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics13070590","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Per- and polyfluoroalkyl substances (PFAS) are of concern because of their potential thyroid hormone system disruption by binding to human transthyretin (hTTR). However, the amount of experimental data is scarce. In this work, new classification and regression QSARs were developed to predict the hTTR disruption based on experimental data measured for 134 PFAS. Bootstrapping, randomization procedures, and external validation were used to check for overfitting, to avoid random correlations, and to evaluate the predictivity of the QSARs, respectively. The best QSARs were characterized by good performances (e.g., training and test accuracies in classification of 0.89 and 0.85, respectively; R2, Q2loo, and Q2F3 in regression of 0.81, 0.77, and 0.82, respectively) and significantly broader domains compared to the few existing similar models. The application of QSARs application to the OECD List of PFAS allowed for the identification of structural categories of major concern, such as per- and polyfluoroalkyl ether-based, perfluoroalkyl carbonyl, and perfluoroalkane sulfonyl compounds. Forty-nine PFAS showed a stronger binding affinity to hTTR than the natural ligand T4. Uncertainty quantification for each model and prediction further enhanced the reliability assessment of predictions. The implementation of the new QSARs in non-commercial software facilitates their application to support future research efforts and regulatory actions.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
Toxics (ISSN 2305-6304) is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to all aspects of toxic chemicals and materials. It publishes reviews, regular research papers, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in detail. There is, therefore, no restriction on the maximum length of the papers, although authors should write their papers in a clear and concise way. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of calculations and experimental procedure can be deposited as supplementary material, if it is not possible to publish them along with the text.