Detect+Track: robust and flexible software tools for improved tracking and behavioural analysis of fish.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Royal Society Open Science Pub Date : 2025-07-23 eCollection Date: 2025-07-01 DOI:10.1098/rsos.242086
Abhishek Dutta, Natalia Pérez-Campanero, Graham K Taylor, Andrew Zisserman, Cait Newport
{"title":"Detect+Track: robust and flexible software tools for improved tracking and behavioural analysis of fish.","authors":"Abhishek Dutta, Natalia Pérez-Campanero, Graham K Taylor, Andrew Zisserman, Cait Newport","doi":"10.1098/rsos.242086","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce a novel video processing method called Detect+Track that combines a deep learning-based object detector with a template-based object agnostic tracker to significantly enhance the accuracy and robustness of animal tracking. Applied to a behavioural experiment involving Picasso triggerfish (<i>Rhinecanthus aculeatus</i>) navigating a randomized array of cylindrical obstacles, the method accurately localizes fish centroids across challenging conditions including occlusion, variable lighting, body deformation and surface ripples. Virtual gates between adjacent obstacles and between obstacles and tank boundaries are computed using Voronoi tessellation and planar homology, enabling detailed analysis of gap selection behaviour. Fish speed, movement direction and a more precise estimate of body centroid-key metrics for behavioural analyses-are estimated using optical flow method. The modular workflow is adaptable to new experimental designs, supports manual correction and retraining for new object classes and allows efficient large-scale batch processing. By addressing key limitations of existing tracking tools, Detect+Track provides a flexible and generalizable solution for researchers studying movement and decision-making in complex environments. A detailed tutorial is provided, together with all the data and code required to reproduce our results and enable future innovations in behavioural tracking and analysis.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":"12 7","pages":"242086"},"PeriodicalIF":2.9000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12289192/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.242086","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a novel video processing method called Detect+Track that combines a deep learning-based object detector with a template-based object agnostic tracker to significantly enhance the accuracy and robustness of animal tracking. Applied to a behavioural experiment involving Picasso triggerfish (Rhinecanthus aculeatus) navigating a randomized array of cylindrical obstacles, the method accurately localizes fish centroids across challenging conditions including occlusion, variable lighting, body deformation and surface ripples. Virtual gates between adjacent obstacles and between obstacles and tank boundaries are computed using Voronoi tessellation and planar homology, enabling detailed analysis of gap selection behaviour. Fish speed, movement direction and a more precise estimate of body centroid-key metrics for behavioural analyses-are estimated using optical flow method. The modular workflow is adaptable to new experimental designs, supports manual correction and retraining for new object classes and allows efficient large-scale batch processing. By addressing key limitations of existing tracking tools, Detect+Track provides a flexible and generalizable solution for researchers studying movement and decision-making in complex environments. A detailed tutorial is provided, together with all the data and code required to reproduce our results and enable future innovations in behavioural tracking and analysis.

检测+跟踪:强大而灵活的软件工具,用于改进鱼类的跟踪和行为分析。
我们引入了一种新的视频处理方法,称为Detect+Track,它将基于深度学习的对象检测器与基于模板的对象不可知跟踪器相结合,显著提高了动物跟踪的准确性和鲁棒性。应用于毕加索触发鱼(Rhinecanthus aculeatus)在随机排列的圆柱形障碍物中导航的行为实验中,该方法在包括遮挡、可变光照、身体变形和表面波纹等具有挑战性的条件下准确定位了鱼的质心。使用Voronoi镶嵌和平面同一性计算相邻障碍物之间以及障碍物和坦克边界之间的虚拟门,从而可以详细分析间隙选择行为。鱼的速度,运动方向和身体质心的更精确的估计-行为分析的关键指标-估计使用光流方法。模块化工作流程适用于新的实验设计,支持手动校正和对新对象类的再训练,并允许高效的大规模批量处理。通过解决现有跟踪工具的关键限制,Detect+Track为研究人员在复杂环境中研究运动和决策提供了灵活和通用的解决方案。提供了详细的教程,以及复制我们的结果所需的所有数据和代码,并使行为跟踪和分析的未来创新成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Royal Society Open Science
Royal Society Open Science Multidisciplinary-Multidisciplinary
CiteScore
6.00
自引率
0.00%
发文量
508
审稿时长
14 weeks
期刊介绍: Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review. The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信