Christiaan H van Dorp, Joshua I Gray, Daniel H Paik, Donna L Farber, Andrew J Yates
{"title":"A variational deep-learning approach to modeling memory T cell dynamics.","authors":"Christiaan H van Dorp, Joshua I Gray, Daniel H Paik, Donna L Farber, Andrew J Yates","doi":"10.1371/journal.pcbi.1013242","DOIUrl":null,"url":null,"abstract":"<p><p>Mechanistic models of dynamic, interacting cell populations have yielded many insights into the growth and resolution of immune responses. Historically these models have described the behavior of pre-defined cell types based on small numbers of phenotypic markers. The ubiquity of deep phenotyping therefore presents a new challenge; how do we confront tractable and interpretable mathematical models with high-dimensional data? To tackle this problem, we studied the development and persistence of lung-resident memory CD4 and CD8 T cells ([Formula: see text]) in mice infected with influenza virus. We developed an approach in which dynamical model parameters and the population structure are inferred simultaneously. This method uses deep learning and stochastic variational inference and is trained on the single-cell flow-cytometry data directly, rather than on the kinetics of pre-identified clusters. We show that during the resolution phase of the immune response, memory CD4 and CD8 T cells within the lung are phenotypically diverse, with subsets exhibiting highly distinct and time-dependent dynamics. [Formula: see text] heterogeneity is maintained long-term by ongoing differentiation of relatively persistent Bcl-2hi CD4 and CD8 [Formula: see text] subsets which resolve into distinct functional populations. Our approach yields new insights into the dynamics of tissue-localized immune memory, and is a novel basis for interpreting time series of high-dimensional data, broadly applicable to diverse biological systems.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"21 7","pages":"e1013242"},"PeriodicalIF":3.8000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1013242","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Mechanistic models of dynamic, interacting cell populations have yielded many insights into the growth and resolution of immune responses. Historically these models have described the behavior of pre-defined cell types based on small numbers of phenotypic markers. The ubiquity of deep phenotyping therefore presents a new challenge; how do we confront tractable and interpretable mathematical models with high-dimensional data? To tackle this problem, we studied the development and persistence of lung-resident memory CD4 and CD8 T cells ([Formula: see text]) in mice infected with influenza virus. We developed an approach in which dynamical model parameters and the population structure are inferred simultaneously. This method uses deep learning and stochastic variational inference and is trained on the single-cell flow-cytometry data directly, rather than on the kinetics of pre-identified clusters. We show that during the resolution phase of the immune response, memory CD4 and CD8 T cells within the lung are phenotypically diverse, with subsets exhibiting highly distinct and time-dependent dynamics. [Formula: see text] heterogeneity is maintained long-term by ongoing differentiation of relatively persistent Bcl-2hi CD4 and CD8 [Formula: see text] subsets which resolve into distinct functional populations. Our approach yields new insights into the dynamics of tissue-localized immune memory, and is a novel basis for interpreting time series of high-dimensional data, broadly applicable to diverse biological systems.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.