Quianna M Vaughan, Amy M Morton, Douglas Moore, Edward Akelman, Joseph J Crisco
{"title":"Development of small bone implants using a mean shape bone in a porcine model for carpal bone replacement.","authors":"Quianna M Vaughan, Amy M Morton, Douglas Moore, Edward Akelman, Joseph J Crisco","doi":"10.1177/09544119251355382","DOIUrl":null,"url":null,"abstract":"<p><p>The development of innovative small bone replacements for the human wrist has been partially limited by the lack of a suitable preclinical animal model. This study explores the feasibility of using the Yucatan minipig (YMP) as a preclinical model for small bone replacement. Implants for the radial carpal bone (RCB), homologous to the human scaphoid, were developed for a pilot in vivo animal study. RCB size (volume, bounding box dimensions) was quantified (<i>n</i> = 35), and relationships between animal age, weight, and RCB volume were investigated. Bounding box dimensions were also analyzed relative to RCB volume. A mean-shaped RCB model was generated using ShapeWorks Studio and scaled to create a set of implants. These implants were evaluated in a pilot in vivo study, where the distances between the explanted bone surface and both the predicted and surgeon-selected implant surfaces were recorded for each animal. Predicted implant distances (0.8 ± 0.2 mm), were larger (<i>p</i> < 0.001) than surgeon-selected implant distances (0.4 ± 0.1 mm) in three animals. In one animal, the predicted implant distances (0.3 ± 0.2 mm) were smaller (<i>p</i> < 0.0001) than the surgeon-selected implant distances (0.5 ± 0.3 mm). The set of implants generated provided the surgeon with options suitable for the range of animals in the in vivo study. This study presents a novel approach to generating small bone replacements by scaling a mean-shaped bone in a porcine model and further evaluates the YMP as a preclinical model for small bone replacement in the human wrist.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":" ","pages":"755-765"},"PeriodicalIF":1.5000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544119251355382","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The development of innovative small bone replacements for the human wrist has been partially limited by the lack of a suitable preclinical animal model. This study explores the feasibility of using the Yucatan minipig (YMP) as a preclinical model for small bone replacement. Implants for the radial carpal bone (RCB), homologous to the human scaphoid, were developed for a pilot in vivo animal study. RCB size (volume, bounding box dimensions) was quantified (n = 35), and relationships between animal age, weight, and RCB volume were investigated. Bounding box dimensions were also analyzed relative to RCB volume. A mean-shaped RCB model was generated using ShapeWorks Studio and scaled to create a set of implants. These implants were evaluated in a pilot in vivo study, where the distances between the explanted bone surface and both the predicted and surgeon-selected implant surfaces were recorded for each animal. Predicted implant distances (0.8 ± 0.2 mm), were larger (p < 0.001) than surgeon-selected implant distances (0.4 ± 0.1 mm) in three animals. In one animal, the predicted implant distances (0.3 ± 0.2 mm) were smaller (p < 0.0001) than the surgeon-selected implant distances (0.5 ± 0.3 mm). The set of implants generated provided the surgeon with options suitable for the range of animals in the in vivo study. This study presents a novel approach to generating small bone replacements by scaling a mean-shaped bone in a porcine model and further evaluates the YMP as a preclinical model for small bone replacement in the human wrist.
期刊介绍:
The Journal of Engineering in Medicine is an interdisciplinary journal encompassing all aspects of engineering in medicine. The Journal is a vital tool for maintaining an understanding of the newest techniques and research in medical engineering.