{"title":"Dissecting human cortical similarity networks across the lifespan.","authors":"Xinyuan Liang, Lianglong Sun, Mingrui Xia, Tengda Zhao, Gaolang Gong, Qiongling Li, Xuhong Liao, Zaixu Cui, Dingna Duan, Chenxuan Pang, Qian Wang, Qian Yu, Yanchao Bi, Pindong Chen, Rui Chen, Yuan Chen, Taolin Chen, Jingliang Cheng, Yuqi Cheng, Zhengjia Dai, Yao Deng, Yuyin Ding, Qi Dong, Jia-Hong Gao, Qiyong Gong, Ying Han, Zaizhu Han, Chu-Chung Huang, Ruiwang Huang, Ran Huo, Lingjiang Li, Ching-Po Lin, Qixiang Lin, Bangshan Liu, Chao Liu, Ningyu Liu, Ying Liu, Yong Liu, Jing Lu, Leilei Ma, Weiwei Men, Shaozheng Qin, Wen Qin, Jiang Qiu, Shijun Qiu, Tianmei Si, Shuping Tan, Yanqing Tang, Sha Tao, Dawei Wang, Fei Wang, Jiali Wang, Jinhui Wang, Pan Wang, Xiaoqin Wang, Yanpei Wang, Dongtao Wei, Yankun Wu, Peng Xie, Xiufeng Xu, Yuehua Xu, Zhilei Xu, Liyuan Yang, Chunshui Yu, Huishu Yuan, Zilong Zeng, Haibo Zhang, Xi Zhang, Gai Zhao, Yanting Zheng, Suyu Zhong, Yong He","doi":"10.1016/j.neuron.2025.06.018","DOIUrl":null,"url":null,"abstract":"<p><p>The human cortex exhibits remarkable morphometric similarity between regions; however, the form and extent of lifespan network remodeling remain unknown. Here, we show the spatiotemporal maturation of morphometric brain networks, using multimodal neuroimaging data from 33,937 healthy participants aged 0-80 years. Global architecture matures from birth to early adulthood through enhanced modularity and small worldness. Early development features cytoarchitecturally distinct remodeling: sensory cortices exhibit increased morphometric differentiation, paralimbic cortices show increased morphometric similarity, and association cortices retain stable hub roles. Morphology-function coupling peaks in early adolescence and then decreases, supporting protracted functional maturation. These growth patterns of morphometric networks are correlated with gene expression related to synaptic signaling, neurodevelopment, and metabolism. Normative models based on morphometric networks identify person-specific, connectivity-phenotypic deviations in 1,202 patients with brain disorders. These data provide a blueprint for elucidating the principle of cortical network reconfiguration and a benchmark for quantifying interindividual network variations.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2025.06.018","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The human cortex exhibits remarkable morphometric similarity between regions; however, the form and extent of lifespan network remodeling remain unknown. Here, we show the spatiotemporal maturation of morphometric brain networks, using multimodal neuroimaging data from 33,937 healthy participants aged 0-80 years. Global architecture matures from birth to early adulthood through enhanced modularity and small worldness. Early development features cytoarchitecturally distinct remodeling: sensory cortices exhibit increased morphometric differentiation, paralimbic cortices show increased morphometric similarity, and association cortices retain stable hub roles. Morphology-function coupling peaks in early adolescence and then decreases, supporting protracted functional maturation. These growth patterns of morphometric networks are correlated with gene expression related to synaptic signaling, neurodevelopment, and metabolism. Normative models based on morphometric networks identify person-specific, connectivity-phenotypic deviations in 1,202 patients with brain disorders. These data provide a blueprint for elucidating the principle of cortical network reconfiguration and a benchmark for quantifying interindividual network variations.
期刊介绍:
Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.