Laura Claudia Popa, Ahmed Abu-Awwad, Simona Sorina Farcas, Simona-Alina Abu-Awwad, Nicoleta Ioana Andreescu
{"title":"Interaction Between CYP1A2-Related Caffeine Metabolism and Vitamin B12/Folate Status in Patients with Metabolic Syndrome: A Novel Biomarker Axis.","authors":"Laura Claudia Popa, Ahmed Abu-Awwad, Simona Sorina Farcas, Simona-Alina Abu-Awwad, Nicoleta Ioana Andreescu","doi":"10.3390/metabo15070450","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives</b>: The prevalence of metabolic syndrome (MetS) is steadily increasing worldwide, driven by complex genetic, nutritional, and environmental factors. Caffeine metabolism, primarily mediated by CYP1A2 (though other enzymes such as CYP1A1 may also be involved), and the status of micronutrients such as vitamin B12 and folate have each been linked to MetS components. This study investigates the interaction between CYP1A2 genetic variants and vitamin B12/folate levels in patients with MetS, aiming to identify a novel biomarker axis with potential implications for personalized interventions. <b>Methods</b>: This cross-sectional observational study included 356 adults diagnosed with MetS, recruited from Western Romania. Genotyping for CYP1A2 rs762551 was performed using TaqMan PCR assays. Daily caffeine intake was assessed via validated dietary questionnaires. Serum levels of folate and vitamin B12 were measured using chemiluminescence immunoassays. <b>Results</b>: AA genotype patients with a moderate coffee intake (1-2 cups/day) had significantly higher folate and B12 levels than AC or CC carriers. These nutritional advantages were associated with more favorable BMI and triglyceride profiles. The interaction between CYP1A2 genotype and coffee intake was significant for both micronutrient levels and metabolic parameters, particularly in the AA group. No significant associations were found in high-coffee-intake subgroups (≥3 cups/day). <b>Conclusions</b>: The interplay between CYP1A2 polymorphisms and B-vitamin status may represent a clinically relevant biomarker axis in MetS. Moderate caffeine intake in slow metabolizers (AA genotype) may boost micronutrient status and metabolic health, supporting personalized nutrition.</p>","PeriodicalId":18496,"journal":{"name":"Metabolites","volume":"15 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolites","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/metabo15070450","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background/Objectives: The prevalence of metabolic syndrome (MetS) is steadily increasing worldwide, driven by complex genetic, nutritional, and environmental factors. Caffeine metabolism, primarily mediated by CYP1A2 (though other enzymes such as CYP1A1 may also be involved), and the status of micronutrients such as vitamin B12 and folate have each been linked to MetS components. This study investigates the interaction between CYP1A2 genetic variants and vitamin B12/folate levels in patients with MetS, aiming to identify a novel biomarker axis with potential implications for personalized interventions. Methods: This cross-sectional observational study included 356 adults diagnosed with MetS, recruited from Western Romania. Genotyping for CYP1A2 rs762551 was performed using TaqMan PCR assays. Daily caffeine intake was assessed via validated dietary questionnaires. Serum levels of folate and vitamin B12 were measured using chemiluminescence immunoassays. Results: AA genotype patients with a moderate coffee intake (1-2 cups/day) had significantly higher folate and B12 levels than AC or CC carriers. These nutritional advantages were associated with more favorable BMI and triglyceride profiles. The interaction between CYP1A2 genotype and coffee intake was significant for both micronutrient levels and metabolic parameters, particularly in the AA group. No significant associations were found in high-coffee-intake subgroups (≥3 cups/day). Conclusions: The interplay between CYP1A2 polymorphisms and B-vitamin status may represent a clinically relevant biomarker axis in MetS. Moderate caffeine intake in slow metabolizers (AA genotype) may boost micronutrient status and metabolic health, supporting personalized nutrition.
MetabolitesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
5.70
自引率
7.30%
发文量
1070
审稿时长
17.17 days
期刊介绍:
Metabolites (ISSN 2218-1989) is an international, peer-reviewed open access journal of metabolism and metabolomics. Metabolites publishes original research articles and review articles in all molecular aspects of metabolism relevant to the fields of metabolomics, metabolic biochemistry, computational and systems biology, biotechnology and medicine, with a particular focus on the biological roles of metabolites and small molecule biomarkers. Metabolites encourages scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Sufficient experimental details must be provided to enable the results to be accurately reproduced. Electronic material representing additional figures, materials and methods explanation, or supporting results and evidence can be submitted with the main manuscript as supplementary material.