Integration of Pseudotargeted Metabolomics and Microbiomics Reveals That Hugan Tablets Ameliorate NASH with Liver Fibrosis in Mice by Modulating Bile Acid Metabolism via the Gut Microbiome.
{"title":"Integration of Pseudotargeted Metabolomics and Microbiomics Reveals That Hugan Tablets Ameliorate NASH with Liver Fibrosis in Mice by Modulating Bile Acid Metabolism via the Gut Microbiome.","authors":"Wenran Dong, Ying Wang, Huajinzi Li, Huilin Ma, Yingxi Gong, Gan Luo, Xiaoyan Gao","doi":"10.3390/metabo15070433","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives</b>: Non-alcoholic steatohepatitis (NASH) carries a high risk of developing hepatic fibrosis. Hugan tablets (HGTs), a traditional Chinese medicine, have exhibited potent anti-hepatic fibrosis effects, though the underlying mechanisms remain unclarified. This study aims to assess the efficacy of HGTs against NASH-related liver fibrosis in mice and investigate the underlying mechanisms via the integration of pseudotargeted metabolomics and microbiomics. <b>Methods</b>: C57BL/6 mice were fed a choline-deficient, ethionine-supplemented (CDE) diet and treated with HGTs. The therapeutic effects of HGTs in CDE mice were assessed. The underlying mechanism of HGTs was investigated by the integration of microbiomics, a pseudo-sterile model, untargeted followed by pseudotargeted metabolomics, and molecular docking. <b>Results</b>: HGTs alleviated NASH-related hepatic fibrosis in CDE mice and restored the composition of the gut microbiota. The depletion of the gut microbiota eliminated the anti-hepatic fibrosis effect of HGTs. HGTs increased intestinal 7-ketolithocholic acid and tauroursodeoxycholic acid via 7α/β-hydroxysteroid dehydrogenase (7α/βHSDH), while reducing deoxycholic acid (DCA) and taurodeoxycholic acid through inhibition of bile acid 7α-dehydratase (BaiE), leading to lower hepatic DCA. Six intestinal components of HGTs interacted with 7αHSDH, 7βHSDH, and BaiE, which are expressed in the bacterial genera altered by HGTs. <b>Conclusions</b>: HGTs alleviate NASH fibrosis by reshaping the gut microbiome, acting on microbial BA-metabolizing enzymes, and regulating the BA metabolism in the liver and gut.</p>","PeriodicalId":18496,"journal":{"name":"Metabolites","volume":"15 7","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12301009/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolites","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/metabo15070433","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background/Objectives: Non-alcoholic steatohepatitis (NASH) carries a high risk of developing hepatic fibrosis. Hugan tablets (HGTs), a traditional Chinese medicine, have exhibited potent anti-hepatic fibrosis effects, though the underlying mechanisms remain unclarified. This study aims to assess the efficacy of HGTs against NASH-related liver fibrosis in mice and investigate the underlying mechanisms via the integration of pseudotargeted metabolomics and microbiomics. Methods: C57BL/6 mice were fed a choline-deficient, ethionine-supplemented (CDE) diet and treated with HGTs. The therapeutic effects of HGTs in CDE mice were assessed. The underlying mechanism of HGTs was investigated by the integration of microbiomics, a pseudo-sterile model, untargeted followed by pseudotargeted metabolomics, and molecular docking. Results: HGTs alleviated NASH-related hepatic fibrosis in CDE mice and restored the composition of the gut microbiota. The depletion of the gut microbiota eliminated the anti-hepatic fibrosis effect of HGTs. HGTs increased intestinal 7-ketolithocholic acid and tauroursodeoxycholic acid via 7α/β-hydroxysteroid dehydrogenase (7α/βHSDH), while reducing deoxycholic acid (DCA) and taurodeoxycholic acid through inhibition of bile acid 7α-dehydratase (BaiE), leading to lower hepatic DCA. Six intestinal components of HGTs interacted with 7αHSDH, 7βHSDH, and BaiE, which are expressed in the bacterial genera altered by HGTs. Conclusions: HGTs alleviate NASH fibrosis by reshaping the gut microbiome, acting on microbial BA-metabolizing enzymes, and regulating the BA metabolism in the liver and gut.
MetabolitesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
5.70
自引率
7.30%
发文量
1070
审稿时长
17.17 days
期刊介绍:
Metabolites (ISSN 2218-1989) is an international, peer-reviewed open access journal of metabolism and metabolomics. Metabolites publishes original research articles and review articles in all molecular aspects of metabolism relevant to the fields of metabolomics, metabolic biochemistry, computational and systems biology, biotechnology and medicine, with a particular focus on the biological roles of metabolites and small molecule biomarkers. Metabolites encourages scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Sufficient experimental details must be provided to enable the results to be accurately reproduced. Electronic material representing additional figures, materials and methods explanation, or supporting results and evidence can be submitted with the main manuscript as supplementary material.