Freeman Lewis, Daniel Shoieb, Somaiyeh Azmoun, Elena Colicino, Yan Jin, Jinhua Chi, Hari Krishnamurthy, Donatella Placidi, Alessandro Padovani, Andrea Pilotto, Fulvio Pepe, Marinella Tula, Patrizia Crippa, Xuexia Wang, Haiwei Gu, Roberto Lucchini
{"title":"Exploratory Metabolomic and Lipidomic Profiling in a Manganese-Exposed Parkinsonism-Affected Population in Northern Italy.","authors":"Freeman Lewis, Daniel Shoieb, Somaiyeh Azmoun, Elena Colicino, Yan Jin, Jinhua Chi, Hari Krishnamurthy, Donatella Placidi, Alessandro Padovani, Andrea Pilotto, Fulvio Pepe, Marinella Tula, Patrizia Crippa, Xuexia Wang, Haiwei Gu, Roberto Lucchini","doi":"10.3390/metabo15070487","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/objectives: </strong>Chronic manganese (Mn) exposure is a recognized environmental contributor to Parkinsonian syndromes, including Mn-induced Parkinsonism (MnIP). This study aimed to evaluate whole-blood Mn levels and investigate disease/exposure-status-related alterations in metabolomic and lipidomic profiles.</p><p><strong>Methods: </strong>A case-control study (N = 97) was conducted in Brescia, Italy, stratifying participants by Parkinsonism diagnosis and residential Mn exposure. Whole-blood Mn was quantified using ICP-MS. Untargeted metabolomic and lipidomic profiling was conducted using LC-MS. Statistical analyses included Mann-Whitney U tests, conditional logistic regression, ANCOVA, and pathway analysis.</p><p><strong>Results: </strong>Whole-blood Mn levels were significantly elevated in Parkinsonism cases vs. controls (median: 1.55 µg/dL [IQR: 0.75] vs. 1.02 µg/dL [IQR: 0.37]; <i>p</i> = 0.001), with Mn associated with increased odds of Parkinsonism (OR = 2.42, 95% CI: 1.13-5.17; <i>p</i> = 0.022). The disease effect metabolites included 3-sulfoxy-L-tyrosine (β = 1.12), formiminoglutamic acid (β = 0.99), and glyoxylic acid (β = 0.83); all FDR <i>p</i> < 0.001. The exposure effect was associated with elevated glycocholic acid (β = 0.51; FDR <i>p</i> = 0.006) and disrupted butanoate (Impact = 0.03; <i>p</i> = 0.004) and glutamate metabolism (<i>p</i> = 0.03). Additionally, SLC-mediated transmembrane transport was enriched (<i>p</i> = 0.003). The interaction effect identified palmitelaidic acid (β = 0.30; FDR <i>p</i> < 0.001), vitamin B6 metabolism (Impact = 0.08; <i>p</i> = 0.03), and glucose homeostasis pathways. In lipidomics, triacylglycerols and phosphatidylethanolamines were associated with the disease effect (e.g., TG(16:0_10:0_18:1), β = 0.79; FDR <i>p</i> < 0.01). Ferroptosis and endocannabinoid signaling were enriched in both disease and interaction effects, while sphingolipid metabolism was specific to the interaction effect.</p><p><strong>Conclusions: </strong>Mn exposure and Parkinsonism are associated with distinct metabolic and lipidomic perturbations. These findings support the utility of omics in identifying environmentally linked Parkinsonism biomarkers and mechanisms.</p>","PeriodicalId":18496,"journal":{"name":"Metabolites","volume":"15 7","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12299838/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolites","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/metabo15070487","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background/objectives: Chronic manganese (Mn) exposure is a recognized environmental contributor to Parkinsonian syndromes, including Mn-induced Parkinsonism (MnIP). This study aimed to evaluate whole-blood Mn levels and investigate disease/exposure-status-related alterations in metabolomic and lipidomic profiles.
Methods: A case-control study (N = 97) was conducted in Brescia, Italy, stratifying participants by Parkinsonism diagnosis and residential Mn exposure. Whole-blood Mn was quantified using ICP-MS. Untargeted metabolomic and lipidomic profiling was conducted using LC-MS. Statistical analyses included Mann-Whitney U tests, conditional logistic regression, ANCOVA, and pathway analysis.
Results: Whole-blood Mn levels were significantly elevated in Parkinsonism cases vs. controls (median: 1.55 µg/dL [IQR: 0.75] vs. 1.02 µg/dL [IQR: 0.37]; p = 0.001), with Mn associated with increased odds of Parkinsonism (OR = 2.42, 95% CI: 1.13-5.17; p = 0.022). The disease effect metabolites included 3-sulfoxy-L-tyrosine (β = 1.12), formiminoglutamic acid (β = 0.99), and glyoxylic acid (β = 0.83); all FDR p < 0.001. The exposure effect was associated with elevated glycocholic acid (β = 0.51; FDR p = 0.006) and disrupted butanoate (Impact = 0.03; p = 0.004) and glutamate metabolism (p = 0.03). Additionally, SLC-mediated transmembrane transport was enriched (p = 0.003). The interaction effect identified palmitelaidic acid (β = 0.30; FDR p < 0.001), vitamin B6 metabolism (Impact = 0.08; p = 0.03), and glucose homeostasis pathways. In lipidomics, triacylglycerols and phosphatidylethanolamines were associated with the disease effect (e.g., TG(16:0_10:0_18:1), β = 0.79; FDR p < 0.01). Ferroptosis and endocannabinoid signaling were enriched in both disease and interaction effects, while sphingolipid metabolism was specific to the interaction effect.
Conclusions: Mn exposure and Parkinsonism are associated with distinct metabolic and lipidomic perturbations. These findings support the utility of omics in identifying environmentally linked Parkinsonism biomarkers and mechanisms.
MetabolitesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
5.70
自引率
7.30%
发文量
1070
审稿时长
17.17 days
期刊介绍:
Metabolites (ISSN 2218-1989) is an international, peer-reviewed open access journal of metabolism and metabolomics. Metabolites publishes original research articles and review articles in all molecular aspects of metabolism relevant to the fields of metabolomics, metabolic biochemistry, computational and systems biology, biotechnology and medicine, with a particular focus on the biological roles of metabolites and small molecule biomarkers. Metabolites encourages scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Sufficient experimental details must be provided to enable the results to be accurately reproduced. Electronic material representing additional figures, materials and methods explanation, or supporting results and evidence can be submitted with the main manuscript as supplementary material.