Huiyun Deng, Xinrui Shang, Hu Zhu, Ning Huang, Lianghua Wang, Mingjuan Sun
{"title":"Saxitoxin: A Comprehensive Review of Its History, Structure, Toxicology, Biosynthesis, Detection, and Preventive Implications.","authors":"Huiyun Deng, Xinrui Shang, Hu Zhu, Ning Huang, Lianghua Wang, Mingjuan Sun","doi":"10.3390/md23070277","DOIUrl":null,"url":null,"abstract":"<p><p>Saxitoxin (STX) is a potent toxin produced by marine dinoflagellates and freshwater or brackish water cyanobacteria, and is a member of the paralytic shellfish toxins (PSTs). As a highly specific blocker of voltage-gated sodium channels (NaVs), STX blocks sodium ion influx, thereby inhibiting nerve impulse transmission and leading to systemic physiological dysfunctions in the nervous, respiratory, cardiovascular, and digestive systems. Severe exposure can lead to paralysis, respiratory failure, and mortality. STX primarily enters the human body through the consumption of contaminated shellfish, posing a significant public health risk as the causative agent of paralytic shellfish poisoning (PSP). Beyond its acute toxicity, STX exerts cascading impacts on food safety, marine ecosystem integrity, and economic stability, particularly in regions affected by harmful algal blooms (HABs). Moreover, the complex molecular structure of STX-tricyclic skeleton and biguanide group-and its diverse analogs (more than 50 derivatives) have made it the focus of research on natural toxins. In this review, we traced the discovery history, chemical structure, molecular biosynthesis, biological enrichment mechanisms, and toxicological actions of STX. Moreover, we highlighted recent advancements in the potential for detection and treatment strategies of STX. By integrating multidisciplinary insights, this review aims to provide a holistic understanding of STX and to guide future research directions for its prevention, management, and potential applications.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"23 7","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/md23070277","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Saxitoxin (STX) is a potent toxin produced by marine dinoflagellates and freshwater or brackish water cyanobacteria, and is a member of the paralytic shellfish toxins (PSTs). As a highly specific blocker of voltage-gated sodium channels (NaVs), STX blocks sodium ion influx, thereby inhibiting nerve impulse transmission and leading to systemic physiological dysfunctions in the nervous, respiratory, cardiovascular, and digestive systems. Severe exposure can lead to paralysis, respiratory failure, and mortality. STX primarily enters the human body through the consumption of contaminated shellfish, posing a significant public health risk as the causative agent of paralytic shellfish poisoning (PSP). Beyond its acute toxicity, STX exerts cascading impacts on food safety, marine ecosystem integrity, and economic stability, particularly in regions affected by harmful algal blooms (HABs). Moreover, the complex molecular structure of STX-tricyclic skeleton and biguanide group-and its diverse analogs (more than 50 derivatives) have made it the focus of research on natural toxins. In this review, we traced the discovery history, chemical structure, molecular biosynthesis, biological enrichment mechanisms, and toxicological actions of STX. Moreover, we highlighted recent advancements in the potential for detection and treatment strategies of STX. By integrating multidisciplinary insights, this review aims to provide a holistic understanding of STX and to guide future research directions for its prevention, management, and potential applications.
期刊介绍:
Marine Drugs (ISSN 1660-3397) publishes reviews, regular research papers and short notes on the research, development and production of drugs from the sea. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible, particularly synthetic procedures and characterization information for bioactive compounds. There is no restriction on the length of the experimental section.