{"title":"Marine-Derived Compounds: A New Horizon in Cancer, Renal, and Metabolic Disease Therapeutics.","authors":"Jinwei Zhang","doi":"10.3390/md23070283","DOIUrl":null,"url":null,"abstract":"<p><p>Marine-derived compounds represent a rich source of structurally diverse molecules with therapeutic potential for cancer, renal disorders, metabolic-associated fatty liver disease (MAFLD), and atherosclerosis. This review systematically evaluates recent advances, highlighting compounds such as Microcolin H, Benzosceptrin C, S14, HN-001, Equisetin, glycosides (e.g., cucumarioside A<sub>2</sub>-2), ilimaquinone, and Aplidin (plitidepsin). Key mechanisms include autophagy modulation, immune checkpoint inhibition, anti-inflammatory effects, and mitochondrial homeostasis. Novel findings reveal glycosides' dual role in cytotoxicity and immunomodulation, ilimaquinone's induction of the DNA damage response, and Aplidin's disruption of protein synthesis via eEF1A2 binding. Pharmacokinetic challenges and structure-activity relationships are critically analyzed, emphasizing nanodelivery systems and synthetic analog development. This review bridges mechanistic insights with translational potential, offering a cohesive framework for future drug development.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"23 7","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/md23070283","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Marine-derived compounds represent a rich source of structurally diverse molecules with therapeutic potential for cancer, renal disorders, metabolic-associated fatty liver disease (MAFLD), and atherosclerosis. This review systematically evaluates recent advances, highlighting compounds such as Microcolin H, Benzosceptrin C, S14, HN-001, Equisetin, glycosides (e.g., cucumarioside A2-2), ilimaquinone, and Aplidin (plitidepsin). Key mechanisms include autophagy modulation, immune checkpoint inhibition, anti-inflammatory effects, and mitochondrial homeostasis. Novel findings reveal glycosides' dual role in cytotoxicity and immunomodulation, ilimaquinone's induction of the DNA damage response, and Aplidin's disruption of protein synthesis via eEF1A2 binding. Pharmacokinetic challenges and structure-activity relationships are critically analyzed, emphasizing nanodelivery systems and synthetic analog development. This review bridges mechanistic insights with translational potential, offering a cohesive framework for future drug development.
期刊介绍:
Marine Drugs (ISSN 1660-3397) publishes reviews, regular research papers and short notes on the research, development and production of drugs from the sea. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible, particularly synthetic procedures and characterization information for bioactive compounds. There is no restriction on the length of the experimental section.