Comparative Quantitative Proteomic Analysis of High and Low Toxin-Producing Karenia brevis Strains Reveals Differences in Polyketide Synthase Abundance and Redox Status of the Proteome.
Kathleen S Rein, Ricardo Colon, Carlos R Romagosa, Nicholas R Ohnikian, Kirstie T Francis, Samuel R Rein
{"title":"Comparative Quantitative Proteomic Analysis of High and Low Toxin-Producing <i>Karenia brevis</i> Strains Reveals Differences in Polyketide Synthase Abundance and Redox Status of the Proteome.","authors":"Kathleen S Rein, Ricardo Colon, Carlos R Romagosa, Nicholas R Ohnikian, Kirstie T Francis, Samuel R Rein","doi":"10.3390/md23070291","DOIUrl":null,"url":null,"abstract":"<p><p>To identify differentially abundant polyketide synthases (PKSs) and to characterize the biochemical consequences of brevetoxin biosynthesis, bottom-up, TMT-based quantitative proteomics and redox proteomics were conducted to compare two strains of the Florida red tide dinoflagellate <i>Karenia brevis</i>, which differ significantly in their brevetoxin content. Forty-eight PKS enzymes potentially linked to brevetoxin production were identified, with thirty-eight showing up to 16-fold higher abundance in the high-toxin strain. A pronounced shift toward a more oxidized redox state was observed in this strain's proteome. Notably, 25 antioxidant-related proteins were significantly elevated, including alternative oxidase (AOX), which increased by 17-fold. These results elucidate the cellular consequences of toxin biosynthesis in <i>K. brevis</i>, offer new leads for the study of brevetoxin biosynthesis, and suggest a novel red tide mitigation approach targeting high toxin-producing strains.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"23 7","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/md23070291","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
To identify differentially abundant polyketide synthases (PKSs) and to characterize the biochemical consequences of brevetoxin biosynthesis, bottom-up, TMT-based quantitative proteomics and redox proteomics were conducted to compare two strains of the Florida red tide dinoflagellate Karenia brevis, which differ significantly in their brevetoxin content. Forty-eight PKS enzymes potentially linked to brevetoxin production were identified, with thirty-eight showing up to 16-fold higher abundance in the high-toxin strain. A pronounced shift toward a more oxidized redox state was observed in this strain's proteome. Notably, 25 antioxidant-related proteins were significantly elevated, including alternative oxidase (AOX), which increased by 17-fold. These results elucidate the cellular consequences of toxin biosynthesis in K. brevis, offer new leads for the study of brevetoxin biosynthesis, and suggest a novel red tide mitigation approach targeting high toxin-producing strains.
期刊介绍:
Marine Drugs (ISSN 1660-3397) publishes reviews, regular research papers and short notes on the research, development and production of drugs from the sea. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible, particularly synthetic procedures and characterization information for bioactive compounds. There is no restriction on the length of the experimental section.