{"title":"<i>Chlorella pyrenoidosa</i> Polysaccharide CPP-3a Promotes M1 Polarization of Macrophages via TLR4/2-MyD88-NF-κB/p38 MAPK Signaling Pathways.","authors":"Yihua Pi, Qingxia Yuan, Shaoting Qin, Chundie Lan, Qingdong Nong, Chenxia Yun, Haibo Tang, Jing Leng, Jian Xiao, Longyan Zhao, Lifeng Zhang","doi":"10.3390/md23070290","DOIUrl":null,"url":null,"abstract":"<p><p>The immunomodulatory polysaccharide CPP-3a, purified from <i>Chlorella pyrenoidosa</i>, was investigated for its effects on RAW264.7 macrophages and underlying mechanisms, revealing that CPP-3a significantly enhanced phagocytic capacity and nitric oxide production while upregulating pro-inflammatory cytokines TNF-α and IL-6 and elevating the co-stimulatory molecule CD86, collectively driving robust M1 polarization. Mechanistically, TLR4-, TLR2-specific inhibitors, and TLR4-knockout cells confirmed TLR4 as the primary receptor for CPP-3a, with TLR2 playing a secondary role in cytokine modulation. CPP-3a activated NF-κB and p38 MAPK signaling pathways via the MyD88-dependent pathway, evidenced by phosphorylation of NF-κB/p65 with its nuclear translocation and increased phosphorylation of p38 MAPK, with these signaling activations further validated by specific pathway inhibitors that abolished M1 polarization phenotypes. Collectively, CPP-3a emerges as a potent TLR4-targeted immunomodulator with adjuvant potential for inflammatory and infectious diseases.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"23 7","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/md23070290","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
The immunomodulatory polysaccharide CPP-3a, purified from Chlorella pyrenoidosa, was investigated for its effects on RAW264.7 macrophages and underlying mechanisms, revealing that CPP-3a significantly enhanced phagocytic capacity and nitric oxide production while upregulating pro-inflammatory cytokines TNF-α and IL-6 and elevating the co-stimulatory molecule CD86, collectively driving robust M1 polarization. Mechanistically, TLR4-, TLR2-specific inhibitors, and TLR4-knockout cells confirmed TLR4 as the primary receptor for CPP-3a, with TLR2 playing a secondary role in cytokine modulation. CPP-3a activated NF-κB and p38 MAPK signaling pathways via the MyD88-dependent pathway, evidenced by phosphorylation of NF-κB/p65 with its nuclear translocation and increased phosphorylation of p38 MAPK, with these signaling activations further validated by specific pathway inhibitors that abolished M1 polarization phenotypes. Collectively, CPP-3a emerges as a potent TLR4-targeted immunomodulator with adjuvant potential for inflammatory and infectious diseases.
期刊介绍:
Marine Drugs (ISSN 1660-3397) publishes reviews, regular research papers and short notes on the research, development and production of drugs from the sea. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible, particularly synthetic procedures and characterization information for bioactive compounds. There is no restriction on the length of the experimental section.