Kai Zhang, Guiyun Cheng, Wenwen Jiang, Beihua Kong, Shu Yao, Xihan Liu
{"title":"5-methylcytosine regulated CCNL2 promotes tumorigenesis and cisplatin resistance of ovarian cancer with therapeutic implications.","authors":"Kai Zhang, Guiyun Cheng, Wenwen Jiang, Beihua Kong, Shu Yao, Xihan Liu","doi":"10.1186/s13048-025-01753-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Backgroud: </strong>Ovarian cancer (OC) is the most lethal gynecological tumor, primarily due to resistance to chemotherapy. Cyclin L2 (CCNL2) is a novel member of the cyclin family and mainly localized in nucleus. It regulates transcription and alternative splicing by interacting with cyclin-dependent kinases. However, its role in OC chemoresistance remains unknown.</p><p><strong>Results: </strong>Here, we demonstrated that the expression level of CCNL2 was higher in OC tissues as well as in various other tumor types. Furthermore, elevated expression of CCNL2 indicated a poor prognosis in ovarian cancer. Functionally, CCNL2 promoted OC cell proliferation and xenograft growth. Depletion of CCNL2 enhanced chemotherapy sensitivity in OC cells. Mechanistically, YBX1 directly bound to CCNL2 mRNA, and its depletion reduced CCNL2 mRNA stability and protein expression. MeRIP assays revealed that YBX1 regulated CCNL2 via 5-methylcytosine (m⁵C) modification. Mutation of the key residue of YBX1 required for m<sup>5</sup>C function led to decreased CCNL2 expression. Further investigation of the YBX1 regulatory network identified a direct interaction between YBX1 and MATR3, which cooperatively modulated downstream targets. Notably, MATR3 knockdown reversed the YBX1-induced upregulation of CCNL2. Virtual screening identified YB-B1 as a YBX1 inhibitor that effectively downregulated both YBX1 and CCNL2 expression. In vitro, YB-B1 suppressed ovarian cancer cell proliferation and enhanced cisplatin cytotoxicity. Furthermore, patient-derived tumor xenograft (PDX) model also confirmed its chemosensitizing effect.</p><p><strong>Conclusions: </strong>In summary, we demonstrated that CCNL2 promoted OC cell proliferation and chemoresistance, with its expression regulated by YBX1 via m<sup>5</sup>C methylation. The small molecule inhibitor YB-B1 was identified as a promising solution to overcome chemotherapy resistance.</p><p><strong>Clinical trial number: </strong>Not applicable.</p>","PeriodicalId":16610,"journal":{"name":"Journal of Ovarian Research","volume":"18 1","pages":"162"},"PeriodicalIF":4.2000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12288274/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ovarian Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13048-025-01753-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Backgroud: Ovarian cancer (OC) is the most lethal gynecological tumor, primarily due to resistance to chemotherapy. Cyclin L2 (CCNL2) is a novel member of the cyclin family and mainly localized in nucleus. It regulates transcription and alternative splicing by interacting with cyclin-dependent kinases. However, its role in OC chemoresistance remains unknown.
Results: Here, we demonstrated that the expression level of CCNL2 was higher in OC tissues as well as in various other tumor types. Furthermore, elevated expression of CCNL2 indicated a poor prognosis in ovarian cancer. Functionally, CCNL2 promoted OC cell proliferation and xenograft growth. Depletion of CCNL2 enhanced chemotherapy sensitivity in OC cells. Mechanistically, YBX1 directly bound to CCNL2 mRNA, and its depletion reduced CCNL2 mRNA stability and protein expression. MeRIP assays revealed that YBX1 regulated CCNL2 via 5-methylcytosine (m⁵C) modification. Mutation of the key residue of YBX1 required for m5C function led to decreased CCNL2 expression. Further investigation of the YBX1 regulatory network identified a direct interaction between YBX1 and MATR3, which cooperatively modulated downstream targets. Notably, MATR3 knockdown reversed the YBX1-induced upregulation of CCNL2. Virtual screening identified YB-B1 as a YBX1 inhibitor that effectively downregulated both YBX1 and CCNL2 expression. In vitro, YB-B1 suppressed ovarian cancer cell proliferation and enhanced cisplatin cytotoxicity. Furthermore, patient-derived tumor xenograft (PDX) model also confirmed its chemosensitizing effect.
Conclusions: In summary, we demonstrated that CCNL2 promoted OC cell proliferation and chemoresistance, with its expression regulated by YBX1 via m5C methylation. The small molecule inhibitor YB-B1 was identified as a promising solution to overcome chemotherapy resistance.
期刊介绍:
Journal of Ovarian Research is an open access, peer reviewed, online journal that aims to provide a forum for high-quality basic and clinical research on ovarian function, abnormalities, and cancer. The journal focuses on research that provides new insights into ovarian functions as well as prevention and treatment of diseases afflicting the organ.
Topical areas include, but are not restricted to:
Ovary development, hormone secretion and regulation
Follicle growth and ovulation
Infertility and Polycystic ovarian syndrome
Regulation of pituitary and other biological functions by ovarian hormones
Ovarian cancer, its prevention, diagnosis and treatment
Drug development and screening
Role of stem cells in ovary development and function.