Effects of Different Surface Treatments and Accelerated Aging on Dental Zirconia-An In Vitro Study.

IF 5.2 3区 医学 Q1 ENGINEERING, BIOMEDICAL
Mihaela Pantea, Lucian Toma Ciocan, Vlad Gabriel Vasilescu, Georgeta Voicu, Adrian-Ionut Nicoară, Florin Miculescu, Robert Ciocoiu, Ana Maria Cristina Țâncu, Elena Georgiana Banu, Marina Imre
{"title":"Effects of Different Surface Treatments and Accelerated Aging on Dental Zirconia-An In Vitro Study.","authors":"Mihaela Pantea, Lucian Toma Ciocan, Vlad Gabriel Vasilescu, Georgeta Voicu, Adrian-Ionut Nicoară, Florin Miculescu, Robert Ciocoiu, Ana Maria Cristina Țâncu, Elena Georgiana Banu, Marina Imre","doi":"10.3390/jfb16070263","DOIUrl":null,"url":null,"abstract":"<p><p>This in vitro study aimed to compare the effects of various surface treatments and hydrothermal aging on the phase composition, microstructure, and compressive strength of dental zirconia (ZrO<sub>2</sub>). Forty-eight zirconia cubes (8 × 8 × 8 mm) were fabricated using CAD/CAM from two materials: infrastructure zirconia (Group S1) and super-translucent multilayered monolithic zirconia (Group S2). Four samples of each material were analyzed in their pre-sintered state (S1-0, S2-0). The remaining specimens were sintered and assigned to sub-groups based on surface treatment: untreated, sandblasted with 30 µm or 50 µm Al<sub>2</sub>O<sub>3</sub>, polished, or polished and glazed. Characterization was performed using EDX, SEM, XRD with Rietveld refinement, Raman spectroscopy, and compressive testing before and after accelerated hydrothermal aging, according to EN ISO 13356:2015. EDX revealed a higher yttria content in monolithic zirconia (10.57 wt%) than in infrastructure zirconia (6.51 wt%). SEM images showed minimal changes in polished samples but clear surface damage after sandblasting, which was more pronounced with larger abrasive particles. XRD and Raman confirmed that sandblasting promoted the tetragonal (t-ZrO<sub>2</sub>) to monoclinic (m-ZrO<sub>2</sub>) phase transformation (t→m), amplified further by hydrothermal aging. The polished groups showed greater phase stability post-aging. Compressive strength decreased in all treated and aged samples, with monolithic zirconia being more affected. Polished samples displayed the best surface quality and structural resilience across both materials. These findings underline the impact of clinical surface treatments on zirconia's long-term mechanical and structural behavior.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 7","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12296088/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16070263","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This in vitro study aimed to compare the effects of various surface treatments and hydrothermal aging on the phase composition, microstructure, and compressive strength of dental zirconia (ZrO2). Forty-eight zirconia cubes (8 × 8 × 8 mm) were fabricated using CAD/CAM from two materials: infrastructure zirconia (Group S1) and super-translucent multilayered monolithic zirconia (Group S2). Four samples of each material were analyzed in their pre-sintered state (S1-0, S2-0). The remaining specimens were sintered and assigned to sub-groups based on surface treatment: untreated, sandblasted with 30 µm or 50 µm Al2O3, polished, or polished and glazed. Characterization was performed using EDX, SEM, XRD with Rietveld refinement, Raman spectroscopy, and compressive testing before and after accelerated hydrothermal aging, according to EN ISO 13356:2015. EDX revealed a higher yttria content in monolithic zirconia (10.57 wt%) than in infrastructure zirconia (6.51 wt%). SEM images showed minimal changes in polished samples but clear surface damage after sandblasting, which was more pronounced with larger abrasive particles. XRD and Raman confirmed that sandblasting promoted the tetragonal (t-ZrO2) to monoclinic (m-ZrO2) phase transformation (t→m), amplified further by hydrothermal aging. The polished groups showed greater phase stability post-aging. Compressive strength decreased in all treated and aged samples, with monolithic zirconia being more affected. Polished samples displayed the best surface quality and structural resilience across both materials. These findings underline the impact of clinical surface treatments on zirconia's long-term mechanical and structural behavior.

不同表面处理及加速老化对牙体氧化锆的影响-体外研究
本体外实验旨在比较不同表面处理和水热老化对牙科氧化锆(ZrO2)相组成、微观结构和抗压强度的影响。采用CAD/CAM技术,采用基础氧化锆(S1组)和超半透明多层单片氧化锆(S2组)两种材料制备了48个氧化锆立方体(8 × 8 × 8 mm)。每种材料的4个样品在预烧结状态(S1-0, S2-0)进行了分析。剩余的试样进行烧结,并根据表面处理分为不同的组:未经处理、用30µm或50µm的氧化铝喷砂、抛光或抛光上釉。根据EN ISO 13356:2015标准,通过EDX、SEM、XRD、Rietveld细化、拉曼光谱和加速水热老化前后的压缩测试进行了表征。EDX显示,整体氧化锆中的钇含量(10.57 wt%)高于基础氧化锆(6.51 wt%)。扫描电镜图像显示,抛光后的样品变化很小,但喷砂后表面损伤明显,磨料颗粒越大,表面损伤越明显。XRD和Raman证实喷砂促进了四方(t- zro2)向单斜(m- zro2)相变(t→m),并通过水热时效进一步放大。经过抛光处理的基团在时效后表现出更大的相稳定性。处理后和时效后样品的抗压强度均下降,整体氧化锆受影响更大。抛光后的样品在两种材料中都显示出最好的表面质量和结构弹性。这些发现强调了临床表面处理对氧化锆长期力学和结构行为的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Functional Biomaterials
Journal of Functional Biomaterials Engineering-Biomedical Engineering
CiteScore
4.60
自引率
4.20%
发文量
226
审稿时长
11 weeks
期刊介绍: Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信